Abstract
Moving boundaries are associated with the time-dependent problems where the momentary position of boundaries needs to be determined as a function of time. The level set method has become an effective tool for tracking, modeling and simulating the motion of free boundaries in fluid mechanics, computer animation and image processing. This work extends our earlier work on solving moving boundary problems with adaptive meshless methods. In particular, the objective of this paper is to investigate numerical performance the radial basis functions (RBFs) methods, with compactly supported basis and with global basis, coupled with a wavelet node refinement technique and a greedy trial space selection technique. Numerical simulations are provided to verify the effectiveness and robustness of RBFs methods with different adaptive techniques.
Original language | English |
---|---|
Pages (from-to) | 37-44 |
Number of pages | 8 |
Journal | Computers and Fluids |
Volume | 86 |
DOIs | |
Publication status | Published - 5 Nov 2013 |
Scopus Subject Areas
- Computer Science(all)
- Engineering(all)
User-Defined Keywords
- Adaptive greedy algorithm
- Compactly supported RBFs
- Global RBFs
- Level set method
- Moving-boundary problems
- Partial differential equations
- Wavelet method