Original language | English |
---|---|
Title of host publication | Encyclopedia of Data Warehousing and Mining |
Editors | John Wang |
Publisher | IGI Global |
Pages | 1810-1814 |
Number of pages | 5 |
Edition | 2nd |
ISBN (Electronic) | 9781605660110 |
ISBN (Print) | 9781605660103, 1605660108 |
DOIs | |
Publication status | Published - 31 Aug 2008 |
Abstract
High dimensional data is a phenomenon in real-world data mining applications. Text data is a typical example. In text mining, a text document is viewed as a vector of terms whose dimension is equal to the total number of unique terms in a data set, which is usually in thousands. High dimensional data occurs in business as well. In retails, for example, to effectively manage supplier relationship, suppliers are often categorized according to their business behaviors (Zhang, Huang, Qian, Xu, & Jing, 2006). The supplier’s behavior data is high dimensional, which contains thousands of attributes to describe the supplier’s behaviors, including product items, ordered amounts, order frequencies, product quality and so forth. One more example is DNA microarray data. Clustering high-dimensional data requires special treatment (Swanson, 1990; Jain, Murty, & Flynn, 1999; Cai, He, & Han, 2005; Kontaki, Papadopoulos & Manolopoulos., 2007), although various methods for clustering are available (Jain & Dubes, 1988). One type of clustering methods for high dimensional data is referred to as subspace clustering, aiming at finding clusters from subspaces instead of the entire data space. In a subspace clustering, each cluster is a set of objects identified by a subset of dimensions and different clusters are represented in different subsets of dimensions. Soft subspace clustering considers that different dimensions make different contributions to the identification of objects in a cluster. It represents the importance of a dimension as a weight that can be treated as the degree of the dimension in contribution to the cluster. Soft subspace clustering can find the cluster memberships of objects and identify the subspace of each cluster in the same clustering process.