Abstract
Adapting models deployed to test distributions can mitigate the performance degradation caused by distribution shifts. However, privacy concerns may render model parameters inaccessible. One promising approach involves utilizing zeroth-order optimization (ZOO) to train a data adaptor to adapt the test data to fit the deployed models. Nevertheless, the data adaptor trained with ZOO typically brings restricted improvements due to the potential corruption of data features caused by the data adaptor. To address this issue, we revisit ZOO in the context of test-time data adaptation. We find that the issue directly stems from the unreliable estimation of the gradients used to optimize the data adaptor, which is inherently due to the unreliable nature of the pseudo-labels assigned to the test data. Based on this observation, we propose pseudo-label-robust data adaptation (SODA) to improve the performance of data adaptation. Specifically, SODA leverages high-confidence predicted labels as reliable labels to optimize the data adaptor with ZOO for label prediction. For data with low-confidence predictions, SODA encourages the adaptor to preserve data information to mitigate data corruption. Empirical results indicate that SODA can significantly enhance the performance of deployed models in the presence of distribution shifts without requiring access to model parameters.
Original language | English |
---|---|
Title of host publication | Advances in Neural Information Processing Systems 36 (NeurIPS 2023) |
Editors | A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, S. Levine |
Publisher | Neural Information Processing Systems Foundation |
Pages | 44017-44038 |
Number of pages | 22 |
ISBN (Print) | 9781713899921 |
DOIs | |
Publication status | Published - 10 Dec 2023 |
Event | 37th Conference on Neural Information Processing Systems, NeurIPS 2023 - Ernest N. Morial Convention Center, New Orleans, United States Duration: 10 Dec 2023 → 16 Dec 2023 https://proceedings.neurips.cc/paper_files/paper/2023 (Conference Paper Search) https://openreview.net/group?id=NeurIPS.cc/2023/Conference#tab-accept-oral (Conference Paper Search) https://neurips.cc/Conferences/2023 (Conference Website) |
Publication series
Name | Advances in Neural Information Processing Systems |
---|---|
Publisher | Neural information processing systems foundation |
Volume | 36 |
ISSN (Print) | 1049-5258 |
Conference
Conference | 37th Conference on Neural Information Processing Systems, NeurIPS 2023 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 10/12/23 → 16/12/23 |
Internet address |
|
Scopus Subject Areas
- Computer Networks and Communications
- Information Systems
- Signal Processing