TY - JOUR
T1 - SlimChain: Scaling Blockchain Transactions through Off-Chain Storage and Parallel Processing
AU - Xu, Cheng
AU - Zhang, Ce
AU - Xu, Jianliang
AU - Pei, Jian
N1 - Funding Information:
This work was supported by Research Grants Council of Hong Kong (Project Nos. 12201520, 12200819) and NSERC Discovery Grants. Jianliang Xu is the corresponding author.
Publisher Copyright:
© 2021, VLDB Endowment. All rights reserved.
PY - 2021/7
Y1 - 2021/7
N2 - Blockchain technology has emerged as the cornerstone of many decentralized applications operating among otherwise untrusted peers. However, it is well known that existing blockchain systems do not scale well. Transactions are often executed and committed sequentially in order to maintain the same view of the total order. Furthermore, it is necessary to duplicate both transaction data and their executions in every node in the blockchain network for integrity assurance. Such storage and computation requirements put significant burdens on the blockchain system, not only limiting system scalability but also undermining system security and robustness by making the network more centralized. To tackle these problems, in this paper, we propose SlimChain, a novel blockchain system that scales transactions through off-chain storage and parallel processing. Advocating a stateless design, SlimChain maintains only the short commitments of ledger states on-chain while dedicating transaction executions and data storage to offchain nodes. To realize SlimChain, we propose new schemes for off-chain smart contract execution, on-chain transaction validation, and state commitment. We also propose optimizations to reduce network transmissions and a new sharding technique to improve system scalability further. Extensive experiments are conducted to validate the performance of the proposed SlimChain system. Compared with the existing systems, SlimChain reduces the on-chain storage requirements by 97% ~ 99%, while also improving the peak throughput by 1.4X ~ 15.6X.
AB - Blockchain technology has emerged as the cornerstone of many decentralized applications operating among otherwise untrusted peers. However, it is well known that existing blockchain systems do not scale well. Transactions are often executed and committed sequentially in order to maintain the same view of the total order. Furthermore, it is necessary to duplicate both transaction data and their executions in every node in the blockchain network for integrity assurance. Such storage and computation requirements put significant burdens on the blockchain system, not only limiting system scalability but also undermining system security and robustness by making the network more centralized. To tackle these problems, in this paper, we propose SlimChain, a novel blockchain system that scales transactions through off-chain storage and parallel processing. Advocating a stateless design, SlimChain maintains only the short commitments of ledger states on-chain while dedicating transaction executions and data storage to offchain nodes. To realize SlimChain, we propose new schemes for off-chain smart contract execution, on-chain transaction validation, and state commitment. We also propose optimizations to reduce network transmissions and a new sharding technique to improve system scalability further. Extensive experiments are conducted to validate the performance of the proposed SlimChain system. Compared with the existing systems, SlimChain reduces the on-chain storage requirements by 97% ~ 99%, while also improving the peak throughput by 1.4X ~ 15.6X.
UR - http://vldb.org/pvldb/vol14-volume-info/
UR - http://www.scopus.com/inward/record.url?scp=85119678964&partnerID=8YFLogxK
U2 - 10.14778/3476249.3476283
DO - 10.14778/3476249.3476283
M3 - Conference article
AN - SCOPUS:85119678964
SN - 2150-8097
VL - 14
SP - 2314
EP - 2326
JO - Proceedings of the VLDB Endowment
JF - Proceedings of the VLDB Endowment
IS - 11
T2 - 47th International Conference on Very Large Data Bases, VLDB 2021
Y2 - 16 August 2021 through 20 August 2021
ER -