Abstract
In the absence of any special luminescent reagents, a weakly chemiluminescent emission was observed during the decomposition of hydrogen peroxide, catalyzed by transition-metal ions, such as Cu(II) and Co(II), in basic aqueous solution. The chemiluminescent intensity was significantly enhanced by the addition of ethyldimethylcetylammonium bromide and uranine. The signal-to-noise ratio (S/N) was proportional to the concentrations of Cu(II) and Co(II). Based on these phenomena, a flow-injection chemiluminescent method for the simultaneous separation and determination of Cu(II) and Co(II) was developed. The detection limits of the present chemiluminescent method for Cu(II) and Co(II) were 7.5 and 0.01 ng/ml, respectively. After ion chromatographic separation of Cu(II) and Co(II) by an IonPac CS5A column with oxalic acid and lithium hydroxide monohydrate as the eluent, the present chemiluminescent system was used as a post-column detector for these two transition metal ions in natural water samples.
Original language | English |
---|---|
Pages (from-to) | 557-561 |
Number of pages | 5 |
Journal | Analytical Sciences |
Volume | 19 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Apr 2003 |
Scopus Subject Areas
- Analytical Chemistry