Similarity preserving deep asymmetric quantization for image retrieval

Junjie Chen, Kwok Wai CHEUNG

Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

17 Citations (Scopus)

Abstract

Quantization has been widely adopted for large-scale multimedia retrieval due to its effectiveness of coding high-dimensional data. Deep quantization models have been demonstrated to achieve the state-of-the-art retrieval accuracy. However, training the deep models given a large-scale database is highly time-consuming as a large amount of parameters are involved. Existing deep quantization methods often sample only a subset from the database for training, which may end up with unsatisfactory retrieval performance as a large portion of label information is discarded. To alleviate this problem, we propose a novel model called Similarity Preserving Deep Asymmetric Quantization (SPDAQ) which can directly learn the compact binary codes and quantization codebooks for all the items in the database efficiently. To do that, SPDAQ makes use of an image subset as well as the label information of all the database items so the image subset items and the database items are mapped to two different but correlated distributions, where the label similarity can be well preserved. An efficient optimization algorithm is proposed for the learning. Extensive experiments conducted on four widely-used benchmark datasets demonstrate the superiority of our proposed SPDAQ model.

Original languageEnglish
Title of host publication33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PublisherAAAI press
Pages8183-8190
Number of pages8
ISBN (Electronic)9781577358091
DOIs
Publication statusPublished - 17 Jul 2019
Event33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 - Honolulu, United States
Duration: 27 Jan 20191 Feb 2019
https://ojs.aaai.org/index.php/AAAI/issue/view/246

Publication series

NameProceedings of the AAAI Conference on Artificial Intelligence

Conference

Conference33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Country/TerritoryUnited States
CityHonolulu
Period27/01/191/02/19
Internet address

Scopus Subject Areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Similarity preserving deep asymmetric quantization for image retrieval'. Together they form a unique fingerprint.

Cite this