TY - JOUR
T1 - Short-term heat acclimation improves the determinants of endurance performance and 5-km running performance in the heat
AU - James, Carl A.
AU - Richardson, Alan J.
AU - Watt, Peter W.
AU - Willmott, Ashley G. B.
AU - Gibson, Oliver R.
AU - Maxwell, Neil S.
N1 - No direct funding was received for this work. The authors report no conflicts of interest associated with this manuscript.
Publisher Copyright:
© 2017, Canadian Science Publishing. All rights reserved.
PY - 2017/3
Y1 - 2017/3
N2 - This study investigated the effect of 5 days of controlled short-term heat acclimation (STHA) on the determinants of endurance performance and 5-km performance in runners, relative to the impairment afforded by moderate heat stress. A control group (CON), matched for total work and power output (2.7 W・kg−1), differentiated thermal and exercise contributions of STHA on exercise performance. Seventeen participants (10 STHA, 7 CON) completed graded exercise tests (GXTs) in cool (13 °C, 50% relative humidity (RH), pre-training) and hot conditions (32 °C, 60% RH, pre- and post-training), as well as 5-km time trials (TTs) in the heat, pre- and post-training. STHA reduced resting (p = 0.01) and exercising (p = 0.04) core temperature alongside a smaller change in thermal sensation (p = 0.04). Both groups improved the lactate threshold (LT, p = 0.021), lactate turnpoint (LTP, p = 0.005) and velocity at maximal oxygen consumption (vV˙ O2max; p = 0.031) similarly. Statistical differences between training methods were observed in TT performance (STHA, −6.2(5.5)%; CON, −0.6(1.7)%, p = 0.029) and total running time during the GXT (STHA, +20.8(12.7)%; CON, +9.8(1.2)%, p = 0.006). There were large mean differences in change in maximal oxygen consumption between STHA +4.0(2.2) mL・kg−1・min−1 (7.3(4.0)%) and CON +1.9(3.7) mL・kg−1・min−1 (3.8(7.2)%). Running economy (RE) deteriorated following both training programmes (p = 0.008). Similarly, RE was impaired in the cool GXT, relative to the hot GXT (p = 0.004). STHA improved endurance running performance in comparison with work-matched normothermic training, despite equality of adaptation for typical determinants of performance (LT, LTP, vV˙ O2max). Accordingly, these data highlight the ergogenic effect of STHA, potentially via greater improvements in maximal oxygen consumption and specific thermoregulatory and associated thermal perception adaptations absent in normothermic training.
AB - This study investigated the effect of 5 days of controlled short-term heat acclimation (STHA) on the determinants of endurance performance and 5-km performance in runners, relative to the impairment afforded by moderate heat stress. A control group (CON), matched for total work and power output (2.7 W・kg−1), differentiated thermal and exercise contributions of STHA on exercise performance. Seventeen participants (10 STHA, 7 CON) completed graded exercise tests (GXTs) in cool (13 °C, 50% relative humidity (RH), pre-training) and hot conditions (32 °C, 60% RH, pre- and post-training), as well as 5-km time trials (TTs) in the heat, pre- and post-training. STHA reduced resting (p = 0.01) and exercising (p = 0.04) core temperature alongside a smaller change in thermal sensation (p = 0.04). Both groups improved the lactate threshold (LT, p = 0.021), lactate turnpoint (LTP, p = 0.005) and velocity at maximal oxygen consumption (vV˙ O2max; p = 0.031) similarly. Statistical differences between training methods were observed in TT performance (STHA, −6.2(5.5)%; CON, −0.6(1.7)%, p = 0.029) and total running time during the GXT (STHA, +20.8(12.7)%; CON, +9.8(1.2)%, p = 0.006). There were large mean differences in change in maximal oxygen consumption between STHA +4.0(2.2) mL・kg−1・min−1 (7.3(4.0)%) and CON +1.9(3.7) mL・kg−1・min−1 (3.8(7.2)%). Running economy (RE) deteriorated following both training programmes (p = 0.008). Similarly, RE was impaired in the cool GXT, relative to the hot GXT (p = 0.004). STHA improved endurance running performance in comparison with work-matched normothermic training, despite equality of adaptation for typical determinants of performance (LT, LTP, vV˙ O2max). Accordingly, these data highlight the ergogenic effect of STHA, potentially via greater improvements in maximal oxygen consumption and specific thermoregulatory and associated thermal perception adaptations absent in normothermic training.
KW - heat acclimation
KW - hyperthermia
KW - endurance
KW - maximal oxygen consumption
KW - thermoregulation
UR - http://www.scopus.com/inward/record.url?scp=85014062348&partnerID=8YFLogxK
U2 - 10.1139/apnm-2016-0349
DO - 10.1139/apnm-2016-0349
M3 - Journal article
C2 - 28177747
AN - SCOPUS:85014062348
SN - 1715-5312
VL - 42
SP - 285
EP - 294
JO - Applied Physiology, Nutrition, and Metabolism
JF - Applied Physiology, Nutrition, and Metabolism
IS - 3
ER -