Selective adsorption of l-serine functional groups on the anatase TiO2(101) surface in benthic microbial fuel cells

Yan-Ling Zhao*, Cui-Hong Wang, Ying Zhai, Rui-Qin Zhang, Michel A. Van Hove

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

8 Citations (Scopus)
22 Downloads (Pure)

Abstract

To help design bacteria-friendly anodes for unmediated benthic microbial fuel cells (MFCs), we explore the role of anatase TiO2(101) surface biocompatibility in selecting the functional groups of the levo-isomer serine (l-Ser), which contains carboxyl, hydroxyl, and amino groups in a single molecule. By performing total energy calculations and molecular dynamics simulations based on a density-functional tight-binding method, we find that at room temperature, the surface should be active for biomolecules with carboxyl/carboxylic and hydroxyl groups, but it is not sensitive to those with amino groups. The hydrogen bonding between the hydroxyl H and surface O facilitates electron transfer from the pili or the bacterial matrix to the anode surface, which improves the output power density. Thus, in combination with conductive polymers, the anatase TiO2(101) surface can be an effective biocompatible substrate in benthic MFCs by enabling the surface O to form more hydrogen bonds with the hydroxyl H of the biomolecule.

Original languageEnglish
Pages (from-to)20806-20817
Number of pages12
JournalPhysical Chemistry Chemical Physics
Volume16
Issue number38
Early online date20 Aug 2014
DOIs
Publication statusPublished - Oct 2014

Scopus Subject Areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Selective adsorption of l-serine functional groups on the anatase TiO2(101) surface in benthic microbial fuel cells'. Together they form a unique fingerprint.

Cite this