TY - JOUR
T1 - Risk assessment of malaria transmission at the border area of China and Myanmar
AU - SHI, Benyun
AU - Zheng, Jinxin
AU - Qiu, Hongjun
AU - Yang, Guo Jing
AU - Xia, Shang
AU - Zhou, Xiao Nong
N1 - Funding Information:
We would like to thank all of the study participants for their commitment. We also specifically thank Mr. Shengguo Li, Ms. Shouqin Yin, and other staff members at the Disease Prevention and Control Center of Tengchong County, Yunnan Province, China, for their efforts in data collection and investigation. Funding This work was supported by the National Natural Science Foundation of China (Grant Nos. 81402760, 81573261, 81502858, 81273192), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161563), the Hong Kong Research Grants Council (RGC/HKBU12202415), and the Research Foundation of Education Bureau of Zhejiang Province, China (Grant No. Y201222907). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
PY - 2017/7/6
Y1 - 2017/7/6
N2 - Background: In order to achieve the goal of malaria elimination, the Chinese government launched the National Malaria Elimination Programme in 2010. However, as a result of increasing cross-border population movements, the risk of imported malaria cases still exists at the border areas of China, resulting in a potential threat of local transmission. The focus of this paper is to assess the Plasmodium vivax incidences in Tengchong, Yunnan Province, at the border areas of China and Myanmar. Methods: Time series of P. vivax incidences in Tengchong from 2006 to 2010 are collected from the web-based China Information System for Disease Control and Prevention, which are further separated into time series of imported and local cases. First, the seasonal and trend decomposition are performed on time series of imported cases using Loess method. Then, the impact of climatic factors on the local transmission of P. vivax is assessed using both linear regression models (LRM) and generalized additive models (GAM). Specifically, the notion of vectorial capacity (VCAP) is used to estimate the transmission potential of P. vivax at different locations, which is calculated based on temperature and rainfall collected from China Meteorological Administration. Results: Comparing with Ruili County, the seasonal pattern of imported cases in Tengchong is different: Tengchong has only one peak, while Ruili has two peaks during each year. This may be due to the different cross-border behaviors of peoples in two locations. The vectorial capacity together with the imported cases and the average humidity, can well explain the local incidences of P. vivax through both LRM and GAM methods. Moreover, the maximum daily temperature is verified to be more suitable to calculate VCAP than the minimal and average temperature in Tengchong County. Conclusion: To achieve malaria elimination in China, the assessment results in this paper will provide further guidance in active surveillance and control of malaria at the border areas of China and Myanmar.
AB - Background: In order to achieve the goal of malaria elimination, the Chinese government launched the National Malaria Elimination Programme in 2010. However, as a result of increasing cross-border population movements, the risk of imported malaria cases still exists at the border areas of China, resulting in a potential threat of local transmission. The focus of this paper is to assess the Plasmodium vivax incidences in Tengchong, Yunnan Province, at the border areas of China and Myanmar. Methods: Time series of P. vivax incidences in Tengchong from 2006 to 2010 are collected from the web-based China Information System for Disease Control and Prevention, which are further separated into time series of imported and local cases. First, the seasonal and trend decomposition are performed on time series of imported cases using Loess method. Then, the impact of climatic factors on the local transmission of P. vivax is assessed using both linear regression models (LRM) and generalized additive models (GAM). Specifically, the notion of vectorial capacity (VCAP) is used to estimate the transmission potential of P. vivax at different locations, which is calculated based on temperature and rainfall collected from China Meteorological Administration. Results: Comparing with Ruili County, the seasonal pattern of imported cases in Tengchong is different: Tengchong has only one peak, while Ruili has two peaks during each year. This may be due to the different cross-border behaviors of peoples in two locations. The vectorial capacity together with the imported cases and the average humidity, can well explain the local incidences of P. vivax through both LRM and GAM methods. Moreover, the maximum daily temperature is verified to be more suitable to calculate VCAP than the minimal and average temperature in Tengchong County. Conclusion: To achieve malaria elimination in China, the assessment results in this paper will provide further guidance in active surveillance and control of malaria at the border areas of China and Myanmar.
UR - http://www.scopus.com/inward/record.url?scp=85021770412&partnerID=8YFLogxK
U2 - 10.1186/s40249-017-0322-2
DO - 10.1186/s40249-017-0322-2
M3 - Journal article
C2 - 28679420
AN - SCOPUS:85021770412
SN - 2095-5162
VL - 6
JO - Infectious Diseases of Poverty
JF - Infectious Diseases of Poverty
IS - 1
M1 - 108
ER -