TY - JOUR
T1 - Rhynchophylline downregulates phosphorylated camp response element binding protein, nuclear receptor-related-1, and brain-derived neurotrophic factor expression in the hippocampus of ketamine-induced conditioned place preference rats
AU - Guo, Youli
AU - Luo, Chaohua
AU - Tu, Genghong
AU - Li, Chan
AU - Liu, Yi
AU - Liu, Wei
AU - YUNG, Kin Lam
AU - Mo, Zhixian
N1 - Funding Information:
This work was supported by the National Natural Science Foundation of China (No. 81229003, 81673628); the Guangzhou Major Science and Technology Project (No. 20Foundation of Guangdong Province, China (No. 2014A030310251).1300000050); and the Natural Science.
PY - 2018/1/1
Y1 - 2018/1/1
N2 - Background: Addiction to ketamine is becoming a serious public health issues, for which there exists no effective treatment. Rhynchophylline (Rhy) is an alkaloid extracted from certain Uncaria species that is well known for both its potent anti-addictive and neuroprotective properties. Increasing evidence supports the contributions of cAMP response element binding protein (CREB), nuclear receptor-related-1 (Nurr1), and brain-derived neurotrophic factor (BDNF) in modulating neural and behavioral plasticity which was induced by addictive drugs. Objective: To investigate the effects of Rhy on the behavior and the levels of phosphorylated CREB (p-CREB), Nurr1, and BDNF in the hippocampus of ketamine-induced conditioned place preference (CPP) rats. Materials and Methods: CPP paradigm was used to establish the model of ketamine-dependent rats and to evaluate the effect of Rhy on ketamine dependence. The expressions of p-CREB, Nurr1, and BDNF were tested by Western blotting and immunohistochemistry. Results: We observed that Rhy can reverse the behavior preference induced by ketamine CPP training. At the same time, expression of p-CREB, Nurr1, and BDNF, which was significantly increased by ketamine, was restored in the Rhy-treated group. Conclusion: This study indicates that Rhy can reverse the reward effect induced by ketamine in rats and the mechanism can probably be related to regulate the hippocampal protein expression of p-CREB, Nurr1, and BDNF.
AB - Background: Addiction to ketamine is becoming a serious public health issues, for which there exists no effective treatment. Rhynchophylline (Rhy) is an alkaloid extracted from certain Uncaria species that is well known for both its potent anti-addictive and neuroprotective properties. Increasing evidence supports the contributions of cAMP response element binding protein (CREB), nuclear receptor-related-1 (Nurr1), and brain-derived neurotrophic factor (BDNF) in modulating neural and behavioral plasticity which was induced by addictive drugs. Objective: To investigate the effects of Rhy on the behavior and the levels of phosphorylated CREB (p-CREB), Nurr1, and BDNF in the hippocampus of ketamine-induced conditioned place preference (CPP) rats. Materials and Methods: CPP paradigm was used to establish the model of ketamine-dependent rats and to evaluate the effect of Rhy on ketamine dependence. The expressions of p-CREB, Nurr1, and BDNF were tested by Western blotting and immunohistochemistry. Results: We observed that Rhy can reverse the behavior preference induced by ketamine CPP training. At the same time, expression of p-CREB, Nurr1, and BDNF, which was significantly increased by ketamine, was restored in the Rhy-treated group. Conclusion: This study indicates that Rhy can reverse the reward effect induced by ketamine in rats and the mechanism can probably be related to regulate the hippocampal protein expression of p-CREB, Nurr1, and BDNF.
KW - Brain-derived neurotrophic factor
KW - conditioned place preference
KW - ketamine
KW - nuclear receptor-related-1
KW - phosphorylated cAMP response element binding protein
KW - rhynchophylline
UR - http://www.scopus.com/inward/record.url?scp=85042525011&partnerID=8YFLogxK
U2 - 10.4103/pm.pm_90_17
DO - 10.4103/pm.pm_90_17
M3 - Journal article
AN - SCOPUS:85042525011
SN - 0973-1296
VL - 14
SP - 81
EP - 86
JO - Pharmacognosy Magazine
JF - Pharmacognosy Magazine
IS - 53
ER -