Abstract
The pyranocoumarins, (±)-3′-angeloyl-4′-acetoxy-cis-khellactone, were isolated from Radix Peucedani, the dry root of Peucedanum praeruptorum Dunn, through bioassay-guided fractionation. The chemical structure of pyranocoumarins was determined by mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. X-ray crystallography showed that there are eight molecules (i.e. two each of four conformers) in each unit cell with their optical activities equally cancelled out. The four conformers are 3′(R)-angeloyl-4′(R)-acetoxy-khellactone in two conformational forms, and 3′(S)-angeloyl-4′(S)-acetoxy-khellactone in two conformational forms. Pyranocoumarins caused apoptotic cell death with IC50 of 41.9±2.8 and 17.3±8.2 μM for drug-sensitive KB-3-1 and multidrug resistant (MDR) KB-V1, respectively. The two- to threefold sensitivity difference between the two cell lines is interesting considering that the same ratio for doxorubicin is 50-300. Strong synergistic interactions were demonstrated when pyranocoumarins were combined with common anti-tumor drugs including doxorubicin, paclitaxel, puromycin or vincristine in MDR KB-V1 cell line, but not in drug-sensitive KB-3-1 cells. Pyranocoumarins increased doxorubicin accumulation in KB-V1 cells by about 25% after 6 h of incubation. Pyranocoumarins treatment for 24 h down-regulated the expression of P-glycoprotein in KB-V1 cells at both protein and mRNA levels. Pyranocoumarins also transiently reduced the cellular ATP contents in KB-V1 cells in a dose-dependent manner. Our results suggest that pyranocoumarins could be a potential MDR reversing agent.
Original language | English |
---|---|
Pages (from-to) | 9-17 |
Number of pages | 9 |
Journal | European Journal of Pharmacology |
Volume | 473 |
Issue number | 1 |
DOIs | |
Publication status | Published - 18 Jul 2003 |
Scopus Subject Areas
- Pharmacology
User-Defined Keywords
- Apoptosis
- KB-V1
- Multidrug resistance
- P-glycoprotein
- Peucedanum praeruptorum Dunn
- Pyranocoumarins