TY - JOUR
T1 - Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria
AU - Xiang, L.
AU - Chan, L. C.
AU - Wong, J. W.C.
N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2000/7
Y1 - 2000/7
N2 - The removal of heavy metals (Cr, Cu, Zn, Ni and Pb) from anaerobically digested sludge from the Yuen Long wastewater treatment plant, Hong Kong, has been studied in a batch system using isolated indigenous iron-oxidizing bacteria. The inoculation of indigenous iron-oxidizing bacteria and the addition of FeSO4 accelerated the solubilization of Cr, Cu, Zn, Ni and Pb from the sludge. pH of the sludge decreased with an increase in Fe2+ concentrations and reached a low pH of 2-2.5 for treatments receiving both bacterial inoculation and FeSO4. After 16 days of bioleaching, the following heavy metal removal efficiencies were obtained: Cr 55.3%, Cu 91.5%, Zn 83.3%, Ni 54.4%, and Pb 16.2%. In contrast, only 2.6% of Cr, 42.9% of Cu, 72.1% of Zn, 22.8% of Ni and 0.56% of Pb were extracted from the control without the bacterial inoculation and addition of FeSO4. The residual heavy metal content in the leached sludge was acceptable for unrestricted use for agriculture. The experimental results confirmed the effectiveness of using the isolated iron-oxidizing bacteria for the removal of heavy metals from sewage sludge.
AB - The removal of heavy metals (Cr, Cu, Zn, Ni and Pb) from anaerobically digested sludge from the Yuen Long wastewater treatment plant, Hong Kong, has been studied in a batch system using isolated indigenous iron-oxidizing bacteria. The inoculation of indigenous iron-oxidizing bacteria and the addition of FeSO4 accelerated the solubilization of Cr, Cu, Zn, Ni and Pb from the sludge. pH of the sludge decreased with an increase in Fe2+ concentrations and reached a low pH of 2-2.5 for treatments receiving both bacterial inoculation and FeSO4. After 16 days of bioleaching, the following heavy metal removal efficiencies were obtained: Cr 55.3%, Cu 91.5%, Zn 83.3%, Ni 54.4%, and Pb 16.2%. In contrast, only 2.6% of Cr, 42.9% of Cu, 72.1% of Zn, 22.8% of Ni and 0.56% of Pb were extracted from the control without the bacterial inoculation and addition of FeSO4. The residual heavy metal content in the leached sludge was acceptable for unrestricted use for agriculture. The experimental results confirmed the effectiveness of using the isolated iron-oxidizing bacteria for the removal of heavy metals from sewage sludge.
UR - http://www.scopus.com/inward/record.url?scp=0034050066&partnerID=8YFLogxK
U2 - 10.1016/S0045-6535(99)00422-1
DO - 10.1016/S0045-6535(99)00422-1
M3 - Journal article
C2 - 10819212
AN - SCOPUS:0034050066
SN - 0045-6535
VL - 41
SP - 283
EP - 287
JO - Chemosphere
JF - Chemosphere
IS - 1-2
ER -