Refracturing shale gas wells in China: Doubling water consumption for enhanced gas recovery

Wenrui Shi, Jianfeng Li, Zisang Huang, Yijiang Feng, Pu Hong, Shaojia Lei, Yi Wu, Jianliang Wang*, Meiyu Guo*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

Abstract

Shale gas extraction in China often faces inadequate reservoir stimulation after initial fracturing of the wells, leading to production challenges despite abundant residual gas. Refracturing is an effective approach to enhance gas recovery; however, its impact on water consumption remains understudied. This study analyzes two refracturing techniques employed in China's largest shale production field, Fuling: temporary plugging and diverting refracturing (TPD) and wellbore reconstruction refracturing (WR), focusing on fracturing efficiency and water consumption. The results demonstrate that WR refracturing exhibits superior fracturing performance but consumes 1.3 times more water than initial fracturing. Considering 315 wells that required refracturing from 2013 to 2017, this study reveals, for the first time, that the lifecycle water consumption for shale gas production with refracturing is more than twice that without refracturing. The estimated total water consumption for the Fuling shale gas field over the next decade, incorporating refracturing, is approximately 7594.53 × 104 m3. By including the water consumption of refracturing, this study provides a more comprehensive evaluation of water usage throughout the entire lifecycle of shale gas development. The findings offer new insights for assessing water consumption in global shale gas development and highlight the importance of considering refracturing when evaluating the environmental impacts and resource management strategies associated with shale gas extraction.

Original languageEnglish
Article number174407
Number of pages11
JournalScience of the Total Environment
Volume946
Early online date2 Jul 2024
DOIs
Publication statusPublished - 10 Oct 2024

User-Defined Keywords

  • China
  • Evaluation of water consumption
  • Fuling
  • Refracturing
  • Shale gas development

Fingerprint

Dive into the research topics of 'Refracturing shale gas wells in China: Doubling water consumption for enhanced gas recovery'. Together they form a unique fingerprint.

Cite this