TY - JOUR
T1 - Reduced Analytic Dependency Modeling
T2 - Robust Fusion for Visual Recognition
AU - Ma, Andy J.
AU - Yuen, Pong C.
N1 - Funding Information:
This project was partially supported by the Science Faculty Research Grant of Hong Kong Baptist University, Hong Kong Research Grants Council General Research Fund 212313, National Science Foundation of China Research Grant 61172136. The authors would like to thank the editor and reviewers for their helpful comments which improve the quality of this paper.
Publisher copyright:
© 2014, Springer Science Business Media New York
PY - 2014/9
Y1 - 2014/9
N2 - This paper addresses the robustness issue of information fusion for visual recognition. Analyzing limitations in existing fusion methods, we discover two key factors affecting the performance and robustness of a fusion model under different data distributions, namely (1) data dependency and (2) fusion assumption on posterior distribution. Considering these two factors, we develop a new framework to model dependency based on probabilistic properties of posteriors without any assumption on the data distribution. Making use of the range characteristics of posteriors, the fusion model is formulated as an analytic function multiplied by a constant with respect to the class label. With the analytic fusion model, we give an equivalent condition to the independent assumption and derive the dependency model from the marginal distribution property. Since the number of terms in the dependency model increases exponentially, the Reduced Analytic Dependency Model (RADM) is proposed based on the convergent property of analytic function. Finally, the optimal coefficients in the RADM are learned by incorporating label information from training data to minimize the empirical classification error under regularized least square criterion, which ensures the discriminative power. Experimental results from robust non-parametric statistical tests show that the proposed RADM method statistically significantly outperforms eight state-of-the-art score-level fusion methods on eight image/video datasets for different tasks of digit, flower, face, human action, object, and consumer video recognition.
AB - This paper addresses the robustness issue of information fusion for visual recognition. Analyzing limitations in existing fusion methods, we discover two key factors affecting the performance and robustness of a fusion model under different data distributions, namely (1) data dependency and (2) fusion assumption on posterior distribution. Considering these two factors, we develop a new framework to model dependency based on probabilistic properties of posteriors without any assumption on the data distribution. Making use of the range characteristics of posteriors, the fusion model is formulated as an analytic function multiplied by a constant with respect to the class label. With the analytic fusion model, we give an equivalent condition to the independent assumption and derive the dependency model from the marginal distribution property. Since the number of terms in the dependency model increases exponentially, the Reduced Analytic Dependency Model (RADM) is proposed based on the convergent property of analytic function. Finally, the optimal coefficients in the RADM are learned by incorporating label information from training data to minimize the empirical classification error under regularized least square criterion, which ensures the discriminative power. Experimental results from robust non-parametric statistical tests show that the proposed RADM method statistically significantly outperforms eight state-of-the-art score-level fusion methods on eight image/video datasets for different tasks of digit, flower, face, human action, object, and consumer video recognition.
KW - Dependency modeling
KW - Probabilistic constraints
KW - Robustness
KW - Score-level fusion
KW - Visual recognition
UR - http://www.scopus.com/inward/record.url?scp=84905653531&partnerID=8YFLogxK
U2 - 10.1007/s11263-014-0723-7
DO - 10.1007/s11263-014-0723-7
M3 - Journal article
AN - SCOPUS:84905653531
SN - 0920-5691
VL - 109
SP - 233
EP - 251
JO - International Journal of Computer Vision
JF - International Journal of Computer Vision
IS - 3
ER -