TY - GEN
T1 - Recovering human mobility flow models and daily routine patterns in a smart environment
AU - CHEN, Li
AU - CHEUNG, Kwok Wai
PY - 2015/1/26
Y1 - 2015/1/26
N2 - With the recent advent of ubiquitous computing and sensor technologies, human mobility data can be acquired for monitoring and analysis purposes, e.g., Daily routine identification. Mining mobility data is challenging due to the spatial and temporal variations of the human mobility, even for the same activity. In this paper, we propose a methodology to first summarize indoor human mobility traces as a flow graph using a probabilistic grammar induction algorithm. Then, we recover salient mobility patterns as sub flows in the flow graph. Thus, such patterns/sub flows are expected to be corresponding to the activities that often last for a while, e.g., Cooking and cleaning. The weighted kernel k-means algorithm is adopted for the sub flow extraction. Finally, we detect the occurrences of the sub flows along the mobility traces and obtain their daily routines via the eigen-decomposition. To evaluate the effectiveness of the proposed methodology, we applied it to a publicly available smart home data set containing digital traces of an elder living in a smart house for 219 days. We illustrate how the flow graphs, sub flows and daily routine patterns can be inferred from the mobility data. Our preliminary experimental results show that the proposed approach can detect sub flows which are more specific in terms of their correspondence to activities when compared with a frequent pattern clustering approach.
AB - With the recent advent of ubiquitous computing and sensor technologies, human mobility data can be acquired for monitoring and analysis purposes, e.g., Daily routine identification. Mining mobility data is challenging due to the spatial and temporal variations of the human mobility, even for the same activity. In this paper, we propose a methodology to first summarize indoor human mobility traces as a flow graph using a probabilistic grammar induction algorithm. Then, we recover salient mobility patterns as sub flows in the flow graph. Thus, such patterns/sub flows are expected to be corresponding to the activities that often last for a while, e.g., Cooking and cleaning. The weighted kernel k-means algorithm is adopted for the sub flow extraction. Finally, we detect the occurrences of the sub flows along the mobility traces and obtain their daily routines via the eigen-decomposition. To evaluate the effectiveness of the proposed methodology, we applied it to a publicly available smart home data set containing digital traces of an elder living in a smart house for 219 days. We illustrate how the flow graphs, sub flows and daily routine patterns can be inferred from the mobility data. Our preliminary experimental results show that the proposed approach can detect sub flows which are more specific in terms of their correspondence to activities when compared with a frequent pattern clustering approach.
KW - daily routine mining
KW - graph-based clustering
KW - probabilistic grammar model
KW - smart house
UR - http://www.scopus.com/inward/record.url?scp=84936877157&partnerID=8YFLogxK
U2 - 10.1109/ICDMW.2014.155
DO - 10.1109/ICDMW.2014.155
M3 - Conference proceeding
AN - SCOPUS:84936877157
T3 - IEEE International Conference on Data Mining Workshops, ICDMW
SP - 541
EP - 548
BT - Proceedings - 14th IEEE International Conference on Data Mining Workshops, ICDMW 2014
A2 - Zhou, Zhi-Hua
A2 - Wang, Wei
A2 - Kumar, Ravi
A2 - Toivonen, Hannu
A2 - Pei, Jian
A2 - Zhexue Huang, Joshua
A2 - Wu, Xindong
PB - IEEE Computer Society
T2 - 14th IEEE International Conference on Data Mining Workshops, ICDMW 2014
Y2 - 14 December 2014
ER -