REASONER: An Explainable Recommendation Dataset with Comprehensive Labeling Ground Truths

Xu Chen, Jingsen Zhang, Lei Wang, Quanyu Dai*, Zhenhua Dong, Ruiming Tang, Rui Zhang, Li Chen, Wayne Xin Zhao, Ji Rong Wen

*Corresponding author for this work

Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

1 Citation (Scopus)

Abstract

Explainable recommendation has attracted much attention from the industry and academic communities. It has shown great potential to improve the recommendation persuasiveness, informativeness and user satisfaction. In the past few years, while a lot of promising explainable recommender models have been proposed, the datasets used to evaluate them still suffer from several limitations, for example, the explanation ground truths are not labeled by the real users, the explanations are mostly single-modal and around only one aspect. To bridge these gaps, in this paper, we build a new explainable recommendation dataset, which, to our knowledge, is the first contribution that provides a large amount of real user labeled multi-modal and multi-aspect explanation ground truths. In specific, we firstly develop a video recommendation platform, where a series of questions around the recommendation explainability are carefully designed. Then, we recruit about 3000 high-quality labelers with different backgrounds to use the system, and collect their behaviors and feedback to our questions. In this paper, we detail the construction process of our dataset and also provide extensive analysis on its characteristics. In addition, we develop a library, where many well-known explainable recommender models are implemented in a unified framework. Based on this library, we build several benchmarks for different explainable recommendation tasks. At last, we present many new opportunities brought by our dataset, which are expected to promote the field of explainable recommendation. Our dataset, library and the related documents have been released at https://reasoner2023.github.io/.

Original languageEnglish
Title of host publication37th Conference on Neural Information Processing Systems, NeurIPS 2023
EditorsA. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, S. Levine
PublisherNeural Information Processing Systems Foundation
Number of pages19
ISBN (Print)9781713899921
Publication statusPublished - 10 Dec 2023
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - Ernest N. Morial Convention Center, New Orleans, United States
Duration: 10 Dec 202316 Dec 2023
https://proceedings.neurips.cc/paper_files/paper/2023 (Conference Paper Search)
https://openreview.net/group?id=NeurIPS.cc/2023/Conference#tab-accept-oral (Conference Paper Search)
https://neurips.cc/Conferences/2023 (Conference Website)

Publication series

NameAdvances in Neural Information Processing Systems
Volume36
ISSN (Print)1049-5258
NameNeurIPS Proceedings

Conference

Conference37th Conference on Neural Information Processing Systems, NeurIPS 2023
Country/TerritoryUnited States
CityNew Orleans
Period10/12/2316/12/23
Internet address

Scopus Subject Areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

User-Defined Keywords

  • Explainable Recommendation
  • Recommendation Dataset
  • Labeling Ground Truths

Cite this