Rapid assessment of the coenzyme Q10 redox state using ultrahigh performance liquid chromatography tandem mass spectrometry

Zhi Tang, Shangfu Li, Xinyuan Guan, Philippe Schmitt-Kopplin, Shuhai LIN*, Zongwei CAI

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

An improved method for accurate and rapid assessment of the coenzyme Q10 (CoQ10) redox state using ultrahigh performance liquid chromatography tandem mass spectrometry was described, with particular attention given to the instability of the reduced form of CoQ10 during sample preparation, chromatographic separation and mass spectrometric detection. As highly lipophilic compounds in complex biological matrices, both reduced and oxidized forms of CoQ10 were extracted simultaneously from the tissue samples by methanol which is superior to ethanol and isopropanol. After centrifugation, the supernatants were immediately separated on a C18 column with isocratic elution using methanol containing 2 mM ammonium acetate as a non-aqueous mobile phase, and detected by positive electrospray ionization tandem mass spectrometry in multiple reaction monitoring (MRM) mode. Ammonium acetate as an additive in methanol provided enhanced mass spectrometric responses for both forms of CoQ10, primarily due to stable formation of adduct ions [M + NH4]+, which served as precursor ions in positive ionization MRM transitions. The assay showed a linear range of 8.6-8585 ng mL-1 for CoQ10H2 and 8.6-4292 ng mL-1 for CoQ10. The limits of detection (LODs) were 7.0 and 1.0 ng mL-1 and limits of quantification (LOQs) were 15.0 and 5.0 ng mL-1 for CoQ10H2 and CoQ10, respectively. This rapid extractive and analytical method could avoid artificial auto-oxidation of the reduced form of CoQ10, enabling the native redox state assessment. This reliable method was also successfully applied for the measurement of the CoQ10 redox state in liver tissues of mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin, revealing the down-regulated mitochondrial electron transport chain.

Original languageEnglish
Pages (from-to)5600-5604
Number of pages5
JournalThe Analyst
Volume139
Issue number21
DOIs
Publication statusPublished - 2014

Scopus Subject Areas

  • Analytical Chemistry
  • Biochemistry
  • Environmental Chemistry
  • Spectroscopy
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Rapid assessment of the coenzyme Q<sub>10</sub> redox state using ultrahigh performance liquid chromatography tandem mass spectrometry'. Together they form a unique fingerprint.

Cite this