Abstract
Photocatalytic degradation of pharmaceuticals in the aquatic environment is considered a promising strategy to address water pollution. In this study, a novel photocatalyst was constructed by decorating g-C 3N 4 (CN) with a-MoC 1-x quantum dots (a-MoC 1-x-QDs) through a facile calcination method. The catalyst showed enhanced tetracycline (TC) degradation performance under visible light. The unique Mo-N surface bonding states and quantum effect leading to superior TC degradation activity (89.1%) compared to pure CN (21.8%) were reported and revealed. More importantly, the mechanism for the significant enhancement of photocatalytic activity of the catalyst was investigated by DFT (density functional theory) calculations and photo-electrochemistry measurements. The results confirmed that the effect of a-MoC 1-x-QDs on CN improved the light absorption capacity obviously, and the Mo-N surface bonding states accelerated the charge migration from CN to a-MoC 1-x-QDs. Moreover, the TC degradation pathway, intermediates and photogenerated carrier transfer behaviors were also discussed in depth. This research provides a new strategy for the construction of noble-metal-free co-catalyst/semiconductor composite materials in the photocatalytic degradation of antibiotics.
Original language | English |
---|---|
Pages (from-to) | 6384-6397 |
Number of pages | 14 |
Journal | Catalysis Science and Technology |
Volume | 12 |
Issue number | 21 |
Early online date | 29 Aug 2022 |
DOIs | |
Publication status | Published - 7 Nov 2022 |
Scopus Subject Areas
- Catalysis