Protein painting for structural and binding site analysis via intracellular lysine reactivity profiling with o-phthalaldehyde

Zhenxiang Zheng, Ya Zeng, Kunjia Lai, Bin Liao, Pengfei Li, Chris Soon Heng Tan*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

2 Citations (Scopus)

Abstract

The three-dimensional structure and the molecular interaction of proteins determine their roles in many cellular processes. Chemical protein painting with protein mass spectrometry can identify changes in structural conformations and molecular interactions of proteins including their binding sites. Nevertheless, most current protein painting techniques identify protein targets and binding sites of drugs in vitro using a cell lysate or purified protein. Here, we tested 11 membrane-permeable lysine-reactive chemical probes for intracellular covalent labeling of endogenous proteins, which reveals ortho-phthalaldehyde (OPA) as the most reactive probe in the intracellular environment. An MS workflow and a new data analysis strategy termed RAPID (Reactive Amino acid Profiling by Inverse Detection) was developed to enhance detection sensitivity. RAPID with OPA successfully identified structural changes induced by the allosteric drug TEPP-46 on its target protein PKM2 and was applied to profile the conformation change of the proteome occurring in cells during thermal denaturation. The application of RAPID-OPA on cells treated with geldanamycin, selumetinib, and staurosporine successfully revealed their binding sites on target proteins. Thus, RAPID-OPA for cellular protein painting enables the identification of ligand-binding sites and detection of protein structural changes occurring in cells.
Original languageEnglish
Pages (from-to)6064-6075
Number of pages12
JournalChemical Science
Volume15
Issue number16
DOIs
Publication statusPublished - 20 Mar 2024

Scopus Subject Areas

  • General Chemistry

Cite this