Protective mechanism of metallothionein against copper-1,10-phenanthroline induced DNA cleavage

Jianhua Yang, Ricky N S WONG, M. S. Yang*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

23 Citations (Scopus)


Metallothionein (MT) has been shown to protect DNA against cleavage induced by a variety of mutagenic agents. The mechanism has been attributed to its ability to either chelate transitional metals that participate in the Fenton reaction, or scavenge free radicals by means of the abundant cystenyl residues of the proteins. In the present study, the protective action of MT against DNA cleavage by the copper-1,10-phenanthroline [(OP)2Cu+] complex was studied in situ. At 0.1 μM, MT inhibited the (OP)2Cu+ induced DNA cleavage by about 50% (IC50~0.1 μM). At 2.5 μM, the cleavage activity was completely inhibited. Similar to MT, cysteine can protect against DNA cleavage by (OP)2Cu+ (IC50 of approximately 3 mM), however, its action was 1500-fold less efficient than MT. The combined action of MT and cysteine was additive. Reduced glutathione (1 and 10 mM) did not protect the (OP)2Cu+ induced DNA cleavage. Sodium azide could inhibit the cleavage only at high concentrations (IC40~25 mM). Spectrophotometric analysis showed that MT can inhibit the formation of the DNA[(OP)2Cu+] complex possibly by chelating Cu. It can also cause a dissociation of the complex after it was formed. In the later case, the mechanism through which MT protects against the DNA cleavage might occur when MT fitted in closely with the complex, competing with the hydroxyl groups of the nucleotides base for Cu, which, in turn, terminate the Fenton-like free radical reaction. Copyright (C) 2000 Elsevier Science Ireland Ltd.

Original languageEnglish
Pages (from-to)221-232
Number of pages12
JournalChemico-Biological Interactions
Issue number3
Publication statusPublished - 15 Mar 2000

Scopus Subject Areas

  • Toxicology

User-Defined Keywords

  • Copper-1,10-phenanthroline [(OP)Cu] complex
  • Fenton reaction
  • Metallothionein


Dive into the research topics of 'Protective mechanism of metallothionein against copper-1,10-phenanthroline induced DNA cleavage'. Together they form a unique fingerprint.

Cite this