Predicting protein functions using incomplete hierarchical labels

Guoxian Yu*, Hailong Zhu*, Carlotta Domeniconi

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

41 Citations (Scopus)

Abstract

Background: Protein function prediction is to assign biological or biochemical functions to proteins, and it is a challenging computational problem characterized by several factors: (1) the number of function labels (annotations) is large; (2) a protein may be associated with multiple labels; (3) the function labels are structured in a hierarchy; and (4) the labels are incomplete. Current predictive models often assume that the labels of the labeled proteins are complete, i.e. no label is missing. But in real scenarios, we may be aware of only some hierarchical labels of a protein, and we may not know whether additional ones are actually present. The scenario of incomplete hierarchical labels, a challenging and practical problem, is seldom studied in protein function prediction.

Results: In this paper, we propose an algorithm to Predict protein functions using Incomplete hierarchical LabeLs (PILL in short). PILL takes into account the hierarchical and the flat taxonomy similarity between function labels, and defines a Combined Similarity (ComSim) to measure the correlation between labels. PILL estimates the missing labels for a protein based on ComSim and the known labels of the protein, and uses a regularization to exploit the interactions between proteins for function prediction. PILL is shown to outperform other related techniques in replenishing the missing labels and in predicting the functions of completely unlabeled proteins on publicly available PPI datasets annotated with MIPS Functional Catalogue and Gene Ontology labels.

Conclusion: The empirical study shows that it is important to consider the incomplete annotation for protein function prediction. The proposed method (PILL) can serve as a valuable tool for protein function prediction using incomplete labels. The Matlab code of PILL is available upon request.
Original languageEnglish
Article number1
Number of pages12
JournalBMC Bioinformatics
Volume16
Issue number1
DOIs
Publication statusPublished - 16 Jan 2015

Scopus Subject Areas

  • Structural Biology
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Applied Mathematics

User-Defined Keywords

  • Combined similarity
  • Function prediction
  • Gene ontology
  • Incomplete hierarchical labels

Fingerprint

Dive into the research topics of 'Predicting protein functions using incomplete hierarchical labels'. Together they form a unique fingerprint.

Cite this