Polygon: A QUIC-Based CDN Server Selection System Supporting Multiple Resource Demands

Mengying Zhou, Tiancheng Guo, Yang Chen*, Yupeng Li, Meng Niu, Xin Wang, Pan Hui

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

Abstract

CDN is a crucial Internet infrastructure ensuring quick access to Internet content. With the expansion of CDN scenarios, beyond delay, resource types like bandwidth and CPU are also important for CDN performance. Our measurements highlight the distinct impacts of various resource types on different CDN requests. Unfortunately, mainstream CDN server selection schemes only consider a single resource type and are unable to choose the most suitable servers when faced with diverse resource types. To fill this gap, we propose Polygon, a QUIC-powered CDN server selection system that is aware of multiple resource demands. Being an advanced transport layer protocol, QUIC equips Polygon with customizable transport parameters to enable the seamless handling of resource requirements in requests. Its 0-RTT and connection migration mechanisms are also utilized to minimize delays in connection and forwarding. A set of collaborative measurement probes and dispatchers are designed to support Polygon, being responsible for capturing various resource information and forwarding requests to suitable CDN servers. Real-world evaluations on the Google Cloud Platform and extensive simulations demonstrate Polygon’s ability to enhance QoE and optimize resource utilization. The results show up to a 54.8% reduction in job completion time, and resource utilization improvements of 13% in bandwidth and 7% in CPU.
Original languageEnglish
Article number10620401
Number of pages15
JournalIEEE/ACM Transactions on Networking
VolumePP
Issue number99
DOIs
Publication statusPublished - 1 Aug 2024

User-Defined Keywords

  • CDN
  • QUIC
  • resource allocation
  • dispatcher
  • overlay network
  • anycast

Cite this