Abstract
This work reported a facile method for fabricating multi-layered polydopamine (PDA) encapsulated AuAg@C@AuAg core/shell nanosphere with a hollow interior. During the synthetic process, the preliminary Ag@C nanosphere is easily covered by an AuAg/PDA hybrid layer through the in situ redox-oxidized polymerization to form the Ag-AuAg@C@AuAg/PDA precursor, in which the AuAg bimetallic nanocrystals are simultaneously obtained via the electrochemical substitution reaction. After etching the residue Ag core, the final AuAg@C@AuAg/PDA hybrid nanosphere is achieved and the inner AuAg shows a unique nanoframe-like nanostructure. The carbon shell plays an important role for the formation and structure evolution of the AuAg@C@AuAg/PDA, and the composition can be modulated by varying the polymerization process. Owing to the well distributed AuAg nanocrystals and inner AuAg nanoframes, the AuAg@C@AuAg/PDA shows better performance than Ag-AuAg@C@AuAg/PDA precursor in catalyzing 4-nitrophenol, and the rate constant (K) to catalyst weight ratio reaches as high as 3.63 min−1 •mg-1. As a result, this work not only offers a hybrid bi-metallic nanocatalyst with excellent performance, but also has valuable implications for compositional modulation of hollow interior multi-layered nanostructure in adsorption, drug delivery, and nanocatalysis.
Original language | English |
---|---|
Article number | 121276 |
Journal | Journal of Hazardous Materials |
Volume | 384 |
DOIs | |
Publication status | Published - 15 Feb 2020 |
User-Defined Keywords
- Bi-metallic nanocrystals
- Carbon
- Core shell
- Hollow
- Polydopamine