Abstract
Pluralistic image completion focuses on generating both visually realistic and diverse results for image completion. Prior methods enjoy the empirical successes of this task. However, their used constraints for pluralistic image completion are argued to be not well interpretable and unsatisfactory from two aspects. First, the constraints for visual reality can be weakly correlated to the objective of image completion or even redundant. Second, the constraints for diversity are designed to be task-agnostic, which causes the constraints to not work well. In this paper, to address the issues, we propose an end-to-end probabilistic method. Specifically, we introduce a unified probabilistic graph model that represents the complex interactions in image completion. The entire procedure of image completion is then mathematically divided into several sub-procedures, which helps efficient enforcement of constraints. The sub-procedure directly related to pluralistic results is identified, where the interaction is established by a Gaussian mixture model (GMM). The inherent parameters of GMM are task-related, which are optimized adaptively during training, while the number of its primitives can control the diversity of results conveniently. We formally establish the effectiveness of our method and demonstrate it with comprehensive experiments. The implementation is available at https://github.com/tmllab/PICMM.
Original language | English |
---|---|
Title of host publication | NIPS '22: Proceedings of the 36th International Conference on Neural Information Processing Systems |
Editors | S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh |
Publisher | Neural information processing systems foundation |
Pages | 24087-24100 |
Number of pages | 14 |
ISBN (Print) | 9781713871088 |
Publication status | Published - 28 Nov 2022 |
Event | 36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans Convention Center, New Orleans, United States Duration: 28 Nov 2022 → 9 Dec 2022 https://neurips.cc/Conferences/2022 https://openreview.net/group?id=NeurIPS.cc/2022/Conference https://proceedings.neurips.cc/paper_files/paper/2022 |
Publication series
Name | Advances in Neural Information Processing Systems |
---|---|
Volume | 35 |
ISSN (Print) | 1049-5258 |
Conference
Conference | 36th Conference on Neural Information Processing Systems, NeurIPS 2022 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 28/11/22 → 9/12/22 |
Internet address |
Scopus Subject Areas
- Computer Networks and Communications
- Information Systems
- Signal Processing