Abstract
Soil contamination with cadmium (Cd) poses risk to human health. Metal hyperaccumulator plants play an important role in phytoextraction of heavy metals from such contaminated sites. Accumulation of Cd and its influence on the induction of phytochelatins in Brassica napus was investigated. Brassica napus plants were grown in nutrient culture with 1 and 5 μM Cd for 10 days. The biomass negatively correlates with Cd concentration in the nutrient solution and the reduction in dry weight was significantly higher for the root than the shoot. Cadmium accumulation positively correlates with the Cd concentration in the nutrient solution and the Cd accumulation in root is significantly higher than the shoot. High-performance liquid chromatography (HPLC) analysis revealed the induction of PC2, PC3 and PC4 in response to Cd in B. napus and their concentrations vary with the Cd level in the external solution. In 1 μM Cd treated plants; PC2 was the dominant thiol fraction in the root, followed by PC3 and PC4, whereas in the shoot, PC3 is the dominant species followed by PC4 and PC2. In 5 μM Cd treated plants, the concentration of both PC3 and PC4 are higher than that of PC2 in the roots. In the shoot, the concentration of PC3 and PC4 was higher than the PC2 irrespective of the quantity of Cd uptake, implying that the detoxification of Cd involves higher molecular weight thiol complexes in the shoot. Considering the high aboveground biomass and Cd accumulation in the shoot, B. napus can be a potential candidate for the phytoextraction of Cd.
Original language | English |
---|---|
Pages (from-to) | 765-773 |
Number of pages | 9 |
Journal | Environmental Technology (United Kingdom) |
Volume | 29 |
Issue number | 7 |
DOIs | |
Publication status | Published - Jul 2008 |
Scopus Subject Areas
- Environmental Chemistry
- Water Science and Technology
- Waste Management and Disposal
User-Defined Keywords
- Brassica napus
- Cadmium hyperaccumulation
- LC-MS
- Phytochelatins
- Phytoextraction