Pd-, Pt-, and Rh-loaded Ce0.6Zr0.35Y0.05O2 three-way catalysts: An investigation on performance and redox properties

H. He, H. X. Dai, L. H. Ng, K. W. Wong, Chak Tong AU

Research output: Contribution to journalArticlepeer-review

161 Citations (Scopus)

Abstract

The redox behaviors, oxygen mobilities, and oxygen storage capacities of Ce0.6Zr0.4O2 (CZ), Ce0.6Zr0.35Y0.05O2 (CZY), and 0.5 wt% M/CZY (M = Pd, Pt, Rh) as well as the three-way catalytic performance of the noble metal-loaded CZY materials have been investigated. It is observed that at a space velocity of 60, 000 h−1 and in an atmosphere close to the theoretical air-to-fuel ratio (i.e., 14.6), the CZY-supported precious metal catalysts showed good three-way catalytic activity. X-ray diffraction investigations revealed that there are two phases (cubic Ce0.75Zr0.25O2, major; cubic ZrO1.87, minor) in CZ, CZY, and 0.5 wt% M/CZY. These materials are porous and large in surface area. According to the results of Ce 3d X-ray photoelectron spectroscopic studies, the doping of Y3+ ions into the CZ lattice would cause the concentrations of oxygen vacancies and Ce3+ ions to increase. The results of H2(or CO)-O2 titration and temperature-programmed reduction-reoxidation experiments indicate the presence of a reversible redox behavior of Ce4+/Ce3+ couples. The results of 18O/16O isotope exchange studies show that in the presence of oxygen vacancies and noble metals, the mobility of lattice oxygen on/in CZY is promoted. Based on the above outcomes, we suggest that by incorporating Y3+ ions into CZ and loading Pd, Pt, or Rh on CZY, one can enhance (i) lattice oxygen mobility, (ii) Ce3+ ion concentration, and (iii) oxygen uptake capacity of the CZY solid solution, generating a class of materials suitable for the catalytic conversion of automotive exhaust.

Original languageEnglish
Pages (from-to)1-13
Number of pages13
JournalJournal of Catalysis
Volume206
Issue number1
DOIs
Publication statusPublished - 2002

Scopus Subject Areas

  • Catalysis
  • Physical and Theoretical Chemistry

User-Defined Keywords

  • Lattice oxygen mobility
  • Noble metal (Pd, Pt, Rh)-loaded CeZrYO catalysts
  • Oxygen storage capacity
  • Three-way exhaust catalysts
  • Yttrium-incorporated CeO-ZrO solid solutions

Fingerprint

Dive into the research topics of 'Pd-, Pt-, and Rh-loaded Ce<sub>0.6</sub>Zr<sub>0.35</sub>Y<sub>0.05</sub>O<sub>2</sub> three-way catalysts: An investigation on performance and redox properties'. Together they form a unique fingerprint.

Cite this