Oxygen vacancy diffusion in bare ZnO nanowires

Bei Deng, Andreia Luisa Da Rosa, Th Frauenheim, J. P. Xiao, X. Q. Shi, R. Q. Zhang*, M. A. VAN HOVE

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Oxygen vacancies (VO) are known to be common native defects in zinc oxide (ZnO) and to play important roles in many applications. Based on density functional theory, we present a study for the migration of oxygen vacancies in ultra-thin ZnO nanowires (NWs). We find that under equilibrium growth conditions VO has a higher formation energy (Ef) inside the wire than that at shallow sites and surface sites, with different geometric relaxations and structural reconstructions. The migration of VO has lower barriers in the NW than in the bulk and is found to be energetically favorable in the direction from the bulk to the surface. These results imply a higher concentration of VO at surface sites and also a relative ease of diffusion in the NW structure. Our results support the previous experimental observations and are important for the development of ZnO-based devices in photocatalysis and optoelectronics.

Original languageEnglish
Pages (from-to)11882-11886
Number of pages5
JournalNanoscale
Volume6
Issue number20
DOIs
Publication statusPublished - 21 Oct 2014

Scopus Subject Areas

  • Materials Science(all)

Fingerprint

Dive into the research topics of 'Oxygen vacancy diffusion in bare ZnO nanowires'. Together they form a unique fingerprint.

Cite this