Abstract
Out-of-distribution (OOD) detection is indispensable for open-world machine learning models. Inspired by recent success in large pre-trained language-vision models, e.g., CLIP, advanced works have achieved impressive OOD detection results by matching the similarity between image features and features of learned prompts, i.e., positive prompts. However, existing works typically struggle with OOD samples having features similar to those of known classes. One straightfor- ward approach is to introduce negative prompts to achieve a dissimilarity matching, which further assesses the anomaly level of image features by introducing the absence of specific features. Unfortunately, our experimental observations show that employing a prompt like "not a photo of a" or learning a shared prompt for all classes fails to capture the dissimilarity for identifying OOD samples. The failure may be attributed to the diversity of negative features, i.e., tons of features could indicate features not belonging to a known class. To this end, we propose to learn a set of negative prompts for each class. The learned positive prompt (for all classes) and negative prompts (for each class) are leveraged to measure the similarity and dissimilarity in the feature space simultaneously, enabling more accurate detection of OOD samples. Extensive experiments are conducted on diverse OOD detection benchmarks, showing the effectiveness of our proposed method.
Original language | English |
---|---|
Title of host publication | Proceedings of the Twelfth International Conference on Learning Representations, ICLR 2024 |
Publisher | International Conference on Learning Representations |
Pages | 1-20 |
Number of pages | 20 |
Publication status | Published - May 2024 |
Event | 12th International Conference on Learning Representations, ICLR 2024 - Messe Wien Exhibition and Congress Center, Vienna, Austria Duration: 7 May 2024 → 11 May 2024 https://iclr.cc/Conferences/2024 (Conference website) https://iclr.cc/virtual/2024/calendar (Conference schedule ) https://openreview.net/group?id=ICLR.cc/2024/Conference#tab-accept-oral (Conference proceedings) |
Publication series
Name | Proceedings of the International Conference on Learning Representations, ICLR |
---|
Conference
Conference | 12th International Conference on Learning Representations, ICLR 2024 |
---|---|
Country/Territory | Austria |
City | Vienna |
Period | 7/05/24 → 11/05/24 |
Internet address |
|