OsDMI3 is a novel component of abscisic acid signaling in the induction of antioxidant defense in leaves of rice

Ben Shi, Lan Ni, Aying Zhang, Jianmei Cao, Hong Zhang, Tingting Qin, Mingpu Tan, Jianhua ZHANG, Mingyi Jiang*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

84 Citations (Scopus)

Abstract

Ca2+ and calmodulin (CaM) have been shown to play an important role in abscisic acid (ABA)-induced antioxidant defense. However, it is unknown whether Ca2+/CaM-dependent protein kinase (CCaMK) is involved in the process. In the present study, the role of rice CCaMK, OsDMI3, in ABA-induced antioxidant defense was investigated in leaves of rice (Oryza sativa) plants. Treatments with ABA, H2O2, and polyethylene glycol (PEG) induced the expression of OsDMI3 and the activity of OsDMI3, and H 2O2 is required for the ABA-induced increases in the expression and the activity of OsDMI3 under water stress. Subcellular localization analysis showed that OsDMI3 is located in the nucleus, the cytoplasm, and the plasma membrane. The analysis of the transient expression of OsDMI3 in rice protoplasts and the RNA interference (RNAi) silencing of OsDMI3 in rice protoplasts showed that OsDMI3 is required for ABA-induced increases in the expression and the activities of superoxide dismutase (SOD) and catalase (CAT). Further, the oxidative damage induced by higher concentrations of PEG and H2O2 was aggravated in the mutant of OsDMI3. Moreover, the analysis of the RNAi silencing of OsDMI3 in protoplasts and the mutant of OsDMI3 showed that higher levels of H2O2 accumulation require OsDMI3 activation in ABA signaling, but the initial H2O 2 production induced by ABA is not dependent on the activation of OsDMI3 in leaves of rice plants. Our data reveal that OsDMI3 is an important component in ABA-induced antioxidant defense in rice.

Original languageEnglish
Pages (from-to)1359-1374
Number of pages16
JournalMolecular Plant
Volume5
Issue number6
DOIs
Publication statusPublished - Nov 2012

Scopus Subject Areas

  • Molecular Biology
  • Plant Science

User-Defined Keywords

  • abscisic acid
  • antioxidant defense
  • OsDMI3
  • oxidative stress
  • signal transduction

Fingerprint

Dive into the research topics of 'OsDMI3 is a novel component of abscisic acid signaling in the induction of antioxidant defense in leaves of rice'. Together they form a unique fingerprint.

Cite this