TY - JOUR
T1 - Organic and excitonic solar cells
AU - ZHU, Fu Rong
N1 - Publisher Copyright:
© Springer Science+Business Media Singapore 2015.
PY - 2015
Y1 - 2015
N2 - Bulk heterojunction organic solar cells (OSCs) are an attractive alternative to silicon based solar cells due to low cost solution fabrication processes. The efficiencies and lifetimes of OSCs are not yet high enough for them to be commercially viable, but significant research effort has been devoted to improving the performance of OSCs through materials innovation and new device designs. It is known that the optical absorption in organic solar cells is limited due to the mismatch between the charge transport scale and optical absorption depth. There are two major research approaches aimed at improving the performance of OSCs. One approach is focused on the development of new organic compounds with tailored energy levels in order to increase the efficiency of OSCs through improved spectral response over the long wavelength region. The other is to realize broadband absorption enhancement in OSCs through light trapping effects. After a brief overview of basics of OSCs, the charge transport properties, different approaches including incorporating metal nanoparticles and surface plasmonic structures to enhancethe absorption in OSCs will be discussed. Apart from the encouraging results in achieving high efficiency for OSCs, realizing stabile OSC performance over a long operation lifetime also attracts a significant research effort. A comprehensive study on the degradation mechanisms of OSCs is also presented in the last part of the chapter.
AB - Bulk heterojunction organic solar cells (OSCs) are an attractive alternative to silicon based solar cells due to low cost solution fabrication processes. The efficiencies and lifetimes of OSCs are not yet high enough for them to be commercially viable, but significant research effort has been devoted to improving the performance of OSCs through materials innovation and new device designs. It is known that the optical absorption in organic solar cells is limited due to the mismatch between the charge transport scale and optical absorption depth. There are two major research approaches aimed at improving the performance of OSCs. One approach is focused on the development of new organic compounds with tailored energy levels in order to increase the efficiency of OSCs through improved spectral response over the long wavelength region. The other is to realize broadband absorption enhancement in OSCs through light trapping effects. After a brief overview of basics of OSCs, the charge transport properties, different approaches including incorporating metal nanoparticles and surface plasmonic structures to enhancethe absorption in OSCs will be discussed. Apart from the encouraging results in achieving high efficiency for OSCs, realizing stabile OSC performance over a long operation lifetime also attracts a significant research effort. A comprehensive study on the degradation mechanisms of OSCs is also presented in the last part of the chapter.
UR - http://www.scopus.com/inward/record.url?scp=84927135575&partnerID=8YFLogxK
U2 - 10.1007/978-981-287-131-2_4
DO - 10.1007/978-981-287-131-2_4
M3 - Journal article
AN - SCOPUS:84927135575
SN - 0933-033X
VL - 203
SP - 81
EP - 125
JO - Springer Series in Materials Science
JF - Springer Series in Materials Science
ER -