Abstract
Vision-language models (VLMs) have emerged as formidable tools, showing their strong capability in handling various open-vocabulary tasks in image recognition, text-driven visual content generation, and visual chatbots, to name a few. In recent years, considerable efforts and resources have been devoted to adaptation methods for improving downstream performance of VLMs, particularly on parameter-efficient fine-tuning methods like prompt learning. However, a crucial aspect that has been largely overlooked is the confidence calibration problem in fine-tuned VLMs, which could greatly reduce reliability when deploying such models in the real world. This paper bridges the gap by systematically investigating the confidence calibration problem in the context of prompt learning and reveals that existing calibration methods are insufficient to address the problem, especially in the open-vocabulary setting. To solve the problem, we present a simple and effective approach called Distance-Aware Calibration (DAC), which is based on scaling the temperature using as guidance the distance between predicted text labels and base classes. The experiments with 7 distinct prompt learning methods applied across 11 diverse downstream datasets demonstrate the effectiveness of DAC, which achieves high efficacy without sacrificing the inference speed.
Original language | English |
---|---|
Title of host publication | Proceedings of the 41st International Conference on Machine Learning, ICML 2024 |
Editors | Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, Felix Berkenkamp |
Publisher | ML Research Press |
Pages | 51734-51754 |
Number of pages | 21 |
Publication status | Published - 21 Jul 2024 |
Event | 41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria Duration: 21 Jul 2024 → 27 Jul 2024 https://icml.cc/ https://openreview.net/group?id=ICML.cc/2024/Conference#tab-accept-oral https://proceedings.mlr.press/v235/ |
Publication series
Name | Proceedings of the International Conference on Machine Learning |
---|
Name | Proceedings of Machine Learning Research |
---|---|
Volume | 235 |
ISSN (Print) | 2640-3498 |
Conference
Conference | 41st International Conference on Machine Learning, ICML 2024 |
---|---|
Country/Territory | Austria |
City | Vienna |
Period | 21/07/24 → 27/07/24 |
Internet address |
Scopus Subject Areas
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability