Open-Vocabulary Calibration for Fine-tuned CLIP

Shuoyuan Wang, Jindong Wang, Guoqing Wang, Bob Zhang, Kaiyang Zhou, Hongxin Wei*

*Corresponding author for this work

Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

Abstract

Vision-language models (VLMs) have emerged as formidable tools, showing their strong capability in handling various open-vocabulary tasks in image recognition, text-driven visual content generation, and visual chatbots, to name a few. In recent years, considerable efforts and resources have been devoted to adaptation methods for improving downstream performance of VLMs, particularly on parameter-efficient fine-tuning methods like prompt learning. However, a crucial aspect that has been largely overlooked is the confidence calibration problem in fine-tuned VLMs, which could greatly reduce reliability when deploying such models in the real world. This paper bridges the gap by systematically investigating the confidence calibration problem in the context of prompt learning and reveals that existing calibration methods are insufficient to address the problem, especially in the open-vocabulary setting. To solve the problem, we present a simple and effective approach called Distance-Aware Calibration (DAC), which is based on scaling the temperature using as guidance the distance between predicted text labels and base classes. The experiments with 7 distinct prompt learning methods applied across 11 diverse downstream datasets demonstrate the effectiveness of DAC, which achieves high efficacy without sacrificing the inference speed.

Original languageEnglish
Title of host publicationProceedings of the 41st International Conference on Machine Learning, ICML 2024
EditorsRuslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, Felix Berkenkamp
PublisherML Research Press
Pages51734-51754
Number of pages21
Publication statusPublished - 21 Jul 2024
Event41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria
Duration: 21 Jul 202427 Jul 2024
https://icml.cc/
https://openreview.net/group?id=ICML.cc/2024/Conference#tab-accept-oral
https://proceedings.mlr.press/v235/

Publication series

NameProceedings of the International Conference on Machine Learning
NameProceedings of Machine Learning Research
Volume235
ISSN (Print)2640-3498

Conference

Conference41st International Conference on Machine Learning, ICML 2024
Country/TerritoryAustria
CityVienna
Period21/07/2427/07/24
Internet address

Scopus Subject Areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Open-Vocabulary Calibration for Fine-tuned CLIP'. Together they form a unique fingerprint.

Cite this