Abstract
Overfitting negatively impacts the generalization ability of deep neural networks (DNNs) in both natural and adversarial training. Existing methods struggle to consistently address different types of overfitting, typically designing strategies that focus separately on either natural or adversarial patterns. In this work, we adopt a unified perspective by solely focusing on natural patterns to explore different types of overfitting. Specifically, we examine the memorization effect in DNNs and reveal a shared behaviour termed over-memorization, which impairs their generalization capacity. This behaviour manifests as DNNs suddenly becoming high-confidence in predicting certain training patterns and retaining a persistent memory for them. Furthermore, when DNNs over-memorize an adversarial pattern, they tend to simultaneously exhibit high-confidence prediction for the corresponding natural pattern. These findings motivate us to holistically mitigate different types of overfitting by hindering the DNNs from over-memorization training patterns. To this end, we propose a general framework, Distraction Over-Memorization (DOM), which explicitly prevents over-memorization by either removing or augmenting the high-confidence natural patterns. Extensive experiments demonstrate the effectiveness of our proposed method in mitigating overfitting across various training paradigms. Our implementation can be found at https://github.com/tmllab/2024_ICLR_DOM.
Original language | English |
---|---|
Title of host publication | Proceedings of the Twelfth International Conference on Learning Representations, ICLR 2024 |
Publisher | International Conference on Learning Representations |
Pages | 1-18 |
Number of pages | 18 |
Publication status | Published - May 2024 |
Event | 12th International Conference on Learning Representations, ICLR 2024 - Messe Wien Exhibition and Congress Center, Vienna, Austria Duration: 7 May 2024 → 11 May 2024 https://iclr.cc/Conferences/2024 (Conference website) https://iclr.cc/virtual/2024/calendar (Conference schedule ) https://openreview.net/group?id=ICLR.cc/2024/Conference#tab-accept-oral (Conference proceedings) |
Publication series
Name | Proceedings of the International Conference on Learning Representations, ICLR |
---|
Conference
Conference | 12th International Conference on Learning Representations, ICLR 2024 |
---|---|
Country/Territory | Austria |
City | Vienna |
Period | 7/05/24 → 11/05/24 |
Internet address |
|
Scopus Subject Areas
- Language and Linguistics
- Computer Science Applications
- Education
- Linguistics and Language