Abstract
In this note, we derive an explicit formula for the equitable chromatic number of a complete n-partite graph Kp1,p2,...,pn. Namely, if M is the largest integer such thatpi(modM)<piM(i=1,2,...,n)thenχ e(Kp1,p2,...,pn)=∑i=1np iM+1,where χe(G) is the equitable chromatic number of graph G.
Original language | English |
---|---|
Pages (from-to) | 307-310 |
Number of pages | 4 |
Journal | Discrete Applied Mathematics |
Volume | 113 |
Issue number | 2-3 |
DOIs | |
Publication status | Published - 15 Oct 2001 |
Scopus Subject Areas
- Discrete Mathematics and Combinatorics
- Applied Mathematics
User-Defined Keywords
- 05C15
- 68Q20
- Complete n-partite graphs
- Equitable chromatic number