Abstract
Although powerful graph neural networks (GNNs) have boosted numerous real-world applications, the potential privacy risk is still underexplored. To close this gap, we perform the first comprehensive study of graph reconstruction attack that aims to reconstruct the adjacency of nodes. We show that a range of factors in GNNs can lead to the surprising leakage of private links. Especially by taking GNNs as a Markov chain and attacking GNNs via a flexible chain approximation, we systematically explore the underneath principles of graph reconstruction attack, and propose two information theory-guided mechanisms: (1) the chain-based attack method with adaptive designs for extracting more private information; (2) the chain-based defense method that sharply reduces the attack fidelity with moderate accuracy loss. Such two objectives disclose a critical belief that to recover better in attack, you must extract more multi-aspect knowledge from the trained GNN; while to learn safer for defense, you must forget more link-sensitive information in training GNNs. Empirically, we achieve state-of-the-art results on six datasets and three common GNNs. The code is publicly available at: https://github.com/tmlr-group/MC-GRA.
Original language | English |
---|---|
Title of host publication | Proceedings of the 40th International Conference on Machine Learning, ICML 2023 |
Editors | Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, Jonathan Scarlett |
Publisher | ML Research Press |
Pages | 42843-42877 |
Number of pages | 35 |
Volume | 202 |
Publication status | Published - Jul 2023 |
Event | 40th International Conference on Machine Learning, ICML 2023 - Honolulu, United States Duration: 23 Jul 2023 → 29 Jul 2023 https://icml.cc/Conferences/2023 https://proceedings.mlr.press/v202/ https://openreview.net/group?id=ICML.cc/2023/Conference |
Publication series
Name | Proceedings of Machine Learning Research |
---|---|
Volume | 202 |
ISSN (Print) | 2640-3498 |
Conference
Conference | 40th International Conference on Machine Learning, ICML 2023 |
---|---|
Country/Territory | United States |
City | Honolulu |
Period | 23/07/23 → 29/07/23 |
Internet address |
Scopus Subject Areas
- Software
- Artificial Intelligence
- Control and Systems Engineering
- Statistics and Probability