Abstract
Generating designs via machine learning has been an on-going challenge in computer-aided design. Recently, deep learning methods have been applied to randomly generate images in fashion, furniture and product design. However, such deep generative methods usually require a large number of training images and human aspects are not taken into account in the design process. In this work, we seek a way to involve human cognitive factors through brain activity indicated by electroencephalographic measurements (EEG) in the generative process. We propose a neuroscience-inspired design with a machine learning method where EEG is used to capture preferred design features. Such signals are used as a condition in generative adversarial networks (GAN). First, we employ a recurrent neural network Long Short-Term Memory as an encoder to extract EEG features from raw EEG signals; this data are recorded from subjects viewing several categories of images from ImageNet. Second, we train a GAN model conditioned on the encoded EEG features to generate design images. Third, we use the model to generate design images from a subject's EEG measured brain activity. To verify our proposed generative design method, we present a case study, in which the subjects imagine the products they prefer, and the corresponding EEG signals are recorded and reconstructed by our model for evaluation. The results indicate that a generated product image with preference EEG signals gains more preference than those generated without EEG signals. Overall, we propose a neuroscience-inspired artificial intelligence design method for generating a design taking into account human preference. The method could help improve communication between designers and clients where clients might not be able to express design requests clearly.
Original language | English |
---|---|
Article number | e33 |
Number of pages | 19 |
Journal | Design Science |
Volume | 6 |
DOIs | |
Publication status | Published - 17 Dec 2020 |
Scopus Subject Areas
- Modelling and Simulation
- Visual Arts and Performing Arts
- Engineering(all)
User-Defined Keywords
- cognitive understanding
- deep learning
- generative adversarial networks
- neurocognition-inspired design
- neuromarketing
- personalized design