Abstract
Neural radiance fields (NeRF) have brought tremendous progress to novel view synthesis. Though NeRF enables the rendering of subtle details in a scene by learning from a dense set of images, it also reconstructs the undesired reflections when we capture images through glass. As a commonly observed interference, the reflection would undermine the visibility of the desired transmitted scene behind glass by occluding the transmitted light rays. In this paper, we aim at addressing the problem of rendering novel transmitted views given a set of reflection-corrupted images. By introducing the transmission encoder and recurring edge constraints as guidance, our neural transmitted radiance fields can resist such reflection interference during rendering and reconstruct high-fidelity results even under sparse views. The proposed method achieves superior performance from the experiments on a newly collected dataset compared with state-of-the-art methods. Our code and data is available at https://github.com/FreeButUselessSoul/TNeRF.
Original language | English |
---|---|
Title of host publication | 36th Conference on Neural Information Processing Systems (NeurIPS 2022) |
Publisher | Neural Information Processing Systems Foundation |
Pages | 1-13 |
Number of pages | 13 |
Publication status | Published - 29 Nov 2022 |
Event | 36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans Convention Center, New Orleans, United States Duration: 28 Nov 2022 → 9 Dec 2022 https://neurips.cc/Conferences/2022 https://openreview.net/group?id=NeurIPS.cc/2022/Conference https://proceedings.neurips.cc/paper_files/paper/2022 |
Publication series
Name | Advances in Neural Information Processing Systems |
---|---|
Volume | 35 |
ISSN (Print) | 1049-5258 |
Name | NeurIPS Proceedings |
---|
Conference
Conference | 36th Conference on Neural Information Processing Systems, NeurIPS 2022 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 28/11/22 → 9/12/22 |
Internet address |