TY - JOUR
T1 - Network Pharmacology Analysis and Molecular Characterization of the Herbal Medicine Formulation Qi-Fu-Yin for the Inhibition of the Neuroinflammatory Biomarker iNOS in Microglial BV-2 Cells
T2 - Implication for the Treatment of Alzheimer's Disease
AU - Ngo, Fung Yin
AU - Wang, Weiwei
AU - Chen, Qilei
AU - Zhao, Jia
AU - Chen, Hubiao
AU - Gao, Jin Ming
AU - Rong, Jianhui
N1 - Funding information:
This work was supported by General Research Fund (GRF) grants (17120915, 17146216, 17100317, and 17119619) from the Research Grants Council of Hong Kong, National Natural Science Foundation of China (nos. 81703726 and 21778046), Health and Medical Research Fund (15161731, 16171751, and 17181231), Science, Technology and Innovation Commission of Shenzhen Municipality (Basic Research Program, Free Exploration Project JCYJ20180306173835901), Research and Cultivation Plan of High-Level Hospital Construction (HKUSZH201902040), Midstream Research Programme for Universities (MRP) (053/18X), and Seed Funding for Basic Research Programme from the University of Hong Kong (201611159156).
Publisher copyright:
© 2020 Fung Yin Ngo et al.
PY - 2020/9/1
Y1 - 2020/9/1
N2 - Aberrant microglial activation drives neuroinflammation and neurodegeneration in Alzheimer's disease (AD). The present study is aimed at investigating whether the herbal formula Qi-Fu-Yin (QFY) could inhibit the inflammatory activation of cultured BV-2 microglia. A network pharmacology approach was employed to predict the active compounds of QFY, protein targets, and affected pathways. The representative pathways and molecular functions of the targets were analyzed by Gene Ontology (GO) and pathway enrichment. A total of 145 active compounds were selected from seven herbal ingredients of QFY. Targets (e.g., MAPT, APP, ACHE, iNOS, and COX-2) were predicted for the selected active compounds based on the relevance to AD and inflammation. As a validation, fractions were sequentially prepared by aqueous extraction, ethanolic precipitation, and HPLC separation, and assayed for downregulating two key proinflammatory biomarkers iNOS and COX-2 in lipopolysaccharide- (LPS-) challenged BV-2 cells by the Western blotting technique. Moreover, the compounds of QFY in 90% ethanol downregulated iNOS in BV-2 cells but showed no activity against COX-2 induction. Among the herbal ingredients of QFY, Angelicae Sinensis Radix and Ginseng Radix et Rhizoma contributed to the selective inhibition of iNOS induction. Furthermore, chemical analysis identified ginsenosides, especially Rg3, as antineuroinflammatory compounds. The herbal formula QFY may ameliorate neuroinflammation via downregulating iNOS in microglia.
AB - Aberrant microglial activation drives neuroinflammation and neurodegeneration in Alzheimer's disease (AD). The present study is aimed at investigating whether the herbal formula Qi-Fu-Yin (QFY) could inhibit the inflammatory activation of cultured BV-2 microglia. A network pharmacology approach was employed to predict the active compounds of QFY, protein targets, and affected pathways. The representative pathways and molecular functions of the targets were analyzed by Gene Ontology (GO) and pathway enrichment. A total of 145 active compounds were selected from seven herbal ingredients of QFY. Targets (e.g., MAPT, APP, ACHE, iNOS, and COX-2) were predicted for the selected active compounds based on the relevance to AD and inflammation. As a validation, fractions were sequentially prepared by aqueous extraction, ethanolic precipitation, and HPLC separation, and assayed for downregulating two key proinflammatory biomarkers iNOS and COX-2 in lipopolysaccharide- (LPS-) challenged BV-2 cells by the Western blotting technique. Moreover, the compounds of QFY in 90% ethanol downregulated iNOS in BV-2 cells but showed no activity against COX-2 induction. Among the herbal ingredients of QFY, Angelicae Sinensis Radix and Ginseng Radix et Rhizoma contributed to the selective inhibition of iNOS induction. Furthermore, chemical analysis identified ginsenosides, especially Rg3, as antineuroinflammatory compounds. The herbal formula QFY may ameliorate neuroinflammation via downregulating iNOS in microglia.
UR - http://www.scopus.com/inward/record.url?scp=85091266128&partnerID=8YFLogxK
U2 - 10.1155/2020/5780703
DO - 10.1155/2020/5780703
M3 - Journal article
C2 - 32952851
AN - SCOPUS:85091266128
SN - 1942-0900
VL - 2020
JO - Oxidative Medicine and Cellular Longevity
JF - Oxidative Medicine and Cellular Longevity
M1 - 5780703
ER -