TY - JOUR
T1 - Na+ reabsorption in cultured rat epididymal epithelium via the Na+/nucleoside cotransporter
AU - Leung, GPH
AU - CHEUNG, King-Ho
AU - Tse, CM
AU - Wong, PYD
PY - 2001/3
Y1 - 2001/3
N2 - The effect of nucleoside on Na+ reabsorption via Na+/nucleoside cotransporter in cultured rat epididymal epithelia was studied by short-circuit current (Isc) technique. Guanosine added apically stimulated Isc in a dose-dependent manner, with a median effective concentration (EC50) of 7 ± 2 μM (mean ± SEM). Removal of Na+ from the apical bathing solution or pretreatment with a nonspecific Na+/nucleoside cotransporter inhibitor, phloridzin, completely blocked the Isc response to guanosine. Moreover, the guanosine response was abolished by pretreatment of the tissue with ouabain, a Na+/K+-ATPase inhibitor, suggesting the involvement of Na+/nucleoside cotransporter on the apical side and Na+/K+-ATPase on the basolateral side in Na+ reabsorption. In contrast, the Isc response to guanosine was not affected after desensitization of purinoceptors by ATP. Addition of the Na+/K+/2Cl- symport inhibitor bumetanide to the basolateral side or the nonspecific Cl- channel blocker diphenylamine-2-carboxylate to the apical side showed no effect on the Isc response to guanosine, excluding stimulation of Cl- secretion by guanosine as the cause of the guanosine-induced Isc. The Isc response to purine nucleoside (guanosine and inosine) was much higher than that to pyrimidine nucleoside (thymidine and cytidine). Consistent with substrate specificity, results of reverse transcription-polymerase chain reaction revealed mRNA for concentrative nucleoside transporter (CNT2), which is a purine nucleoside-selective Na+/nucleoside cotransporter in the epididymis, but not for CNT1. It is suggested that the Na+/nucleoside cotransporter (i.e., CNT2) may be one of the elements involved in Na+ and fluid reabsorption in the epididymis, thereby providing an optimal microenvironment for the maturation and storage of spermatozoa.
AB - The effect of nucleoside on Na+ reabsorption via Na+/nucleoside cotransporter in cultured rat epididymal epithelia was studied by short-circuit current (Isc) technique. Guanosine added apically stimulated Isc in a dose-dependent manner, with a median effective concentration (EC50) of 7 ± 2 μM (mean ± SEM). Removal of Na+ from the apical bathing solution or pretreatment with a nonspecific Na+/nucleoside cotransporter inhibitor, phloridzin, completely blocked the Isc response to guanosine. Moreover, the guanosine response was abolished by pretreatment of the tissue with ouabain, a Na+/K+-ATPase inhibitor, suggesting the involvement of Na+/nucleoside cotransporter on the apical side and Na+/K+-ATPase on the basolateral side in Na+ reabsorption. In contrast, the Isc response to guanosine was not affected after desensitization of purinoceptors by ATP. Addition of the Na+/K+/2Cl- symport inhibitor bumetanide to the basolateral side or the nonspecific Cl- channel blocker diphenylamine-2-carboxylate to the apical side showed no effect on the Isc response to guanosine, excluding stimulation of Cl- secretion by guanosine as the cause of the guanosine-induced Isc. The Isc response to purine nucleoside (guanosine and inosine) was much higher than that to pyrimidine nucleoside (thymidine and cytidine). Consistent with substrate specificity, results of reverse transcription-polymerase chain reaction revealed mRNA for concentrative nucleoside transporter (CNT2), which is a purine nucleoside-selective Na+/nucleoside cotransporter in the epididymis, but not for CNT1. It is suggested that the Na+/nucleoside cotransporter (i.e., CNT2) may be one of the elements involved in Na+ and fluid reabsorption in the epididymis, thereby providing an optimal microenvironment for the maturation and storage of spermatozoa.
U2 - 10.1095/biolreprod64.3.764
DO - 10.1095/biolreprod64.3.764
M3 - Journal article
SN - 0006-3363
VL - 64
SP - 764
EP - 769
JO - Biology of Reproduction
JF - Biology of Reproduction
IS - 3
ER -