Abstract
Spherical cerium oxide nanoparticles and microsized rod-shaped and spindle-like CeO2 structures have been synthesized using a polyol method. When the duration of reaction and the concentration of cerium precursor are controlled, CeO2 products of different morphologies can be selectively produced. Results from XRD, XPS, SEM, and FT-IR measurements suggest that the CeO2 nanospheres are formed from the decomposition of the cerium precursor. Further reactions between the as-prepared CeO2 and ethylene glycol yield the rods/spindle-like cerium formate particles. These morphologies are preserved even after calcination. The order of band gap energy of these samples was found to be rod-shaped > spherical > spindle-like samples, as determined by the UV-Vis spectroscopic method. Compared to a nonoriented polycrystalline CeO2, these samples show an increase in band gap energy due to the quantum size effect. The higher catalytic activity on CO conversion in a spindle-like sample can be explained from the extent of Ce(IV) reduction and the oxygen vacancy.
Original language | English |
---|---|
Pages (from-to) | 4514-4522 |
Number of pages | 9 |
Journal | Chemistry of Materials |
Volume | 17 |
Issue number | 17 |
DOIs | |
Publication status | Published - 23 Aug 2005 |
Scopus Subject Areas
- General Chemistry
- General Chemical Engineering
- Materials Chemistry