TY - JOUR
T1 - Molecular network and chemical fragment-based characteristics of medicinal herbs with cold and hot properties from Chinese medicine
AU - Liang, Fei
AU - Li, Li
AU - Wang, Maolin
AU - Niu, Xuyan
AU - Zhan, Junping
AU - He, Xiaojuan
AU - Yu, Changyuan
AU - Jiang, Miao
AU - LYU, Aiping
N1 - Funding Information:
This research is supported by the projects from the National Natural Science Foundation of China (Grant no. 30902003 ), and by the E-institutes of Shanghai Municipal Education Commission (no. E03008 ).
PY - 2013/7/30
Y1 - 2013/7/30
N2 - Ethnopharmacological relevance Chinese herbal medicines (HMs) is one of the great herbal systems of the world, which play an important role in current health care system in many countries. In the view of tradition Chinese medicine (TCM) theory, Yin-yang and five-elements theory is the central theory, which is used to explain how the world and body work. Under the guidance of such philosophy, TCM considers that HMs have different properties, which are the important factors for prescribing herbal formulae; such prescriptions are based on TCM pattern classification in clinical practice. The cold and hot property are commonly defined for HM property identification; however, the biological activities that are related to the HM property remain a mystery because of a lack of appropriate methods. A bioinformatics approach was applied to identify the distinguishing biological activities of HMs that have these cold and hot properties. Material and methods Twenty HMs with typical cold and hot properties (10 cold and 10 hot) were selected based on TCM clinical application records and Chinese pharmacopeia. The active target proteins of each HM were searched in the PubChem database and were analyzed in Ingenuity Pathway Analysis (IPA) platform to find out the HM property-related biological activities. In addition, the main compounds of the HMs were fragmented using a fragment-based approach and were analyzed for the purpose of deciphering the properties. Results The main biological networks of HMs with cold and hot properties include cell cycle, cellular growth, proliferation and development, cancer, cytokine signaling, and intracellular and second messenger signaling; 11 specific pathways are presented to be perturbed only by HMs with the hot property, and the 27 specific target protein molecules include PRKACA, PRKCA, PRKCB, PRKCD, PRKCE, PRKCG, PRKD1, TLR4, TLR7, TLR8, TLR9, HTR4, HTR6, HTR7, HTR2A, HTR1B, HTR2B, GNAO1, GNAI1, TNF, IL8, ROCK2, AKT1, MAPK1, RPS6KA1, RPS6KA3 and JAK2, which are involved in the biological network. One specific pathway is detected to be involved in the biological network of HMs with the cold property, the specific molecules are RAN and KPNB1. Cold propertied HMs show intensive toxicity in the heart, liver and kidney compared with hot HMs, which is likely to be correlated with the specific chemical fragments constructions in the HMs with the cold property, such as long chain alkenes, Benzo heterocycle and azotic heterocycle according to the chemical fragment analysis for the HMs. Conclusions Inflammation and immunity regulation are more related to HMs with the hot property, and cold propertied HMs possess the tendency to impact cell growth, proliferation and development. Integrative bioinformatics analysis and chemical structure analysis are a promising methods for identifying the biological activity of HM properties.
AB - Ethnopharmacological relevance Chinese herbal medicines (HMs) is one of the great herbal systems of the world, which play an important role in current health care system in many countries. In the view of tradition Chinese medicine (TCM) theory, Yin-yang and five-elements theory is the central theory, which is used to explain how the world and body work. Under the guidance of such philosophy, TCM considers that HMs have different properties, which are the important factors for prescribing herbal formulae; such prescriptions are based on TCM pattern classification in clinical practice. The cold and hot property are commonly defined for HM property identification; however, the biological activities that are related to the HM property remain a mystery because of a lack of appropriate methods. A bioinformatics approach was applied to identify the distinguishing biological activities of HMs that have these cold and hot properties. Material and methods Twenty HMs with typical cold and hot properties (10 cold and 10 hot) were selected based on TCM clinical application records and Chinese pharmacopeia. The active target proteins of each HM were searched in the PubChem database and were analyzed in Ingenuity Pathway Analysis (IPA) platform to find out the HM property-related biological activities. In addition, the main compounds of the HMs were fragmented using a fragment-based approach and were analyzed for the purpose of deciphering the properties. Results The main biological networks of HMs with cold and hot properties include cell cycle, cellular growth, proliferation and development, cancer, cytokine signaling, and intracellular and second messenger signaling; 11 specific pathways are presented to be perturbed only by HMs with the hot property, and the 27 specific target protein molecules include PRKACA, PRKCA, PRKCB, PRKCD, PRKCE, PRKCG, PRKD1, TLR4, TLR7, TLR8, TLR9, HTR4, HTR6, HTR7, HTR2A, HTR1B, HTR2B, GNAO1, GNAI1, TNF, IL8, ROCK2, AKT1, MAPK1, RPS6KA1, RPS6KA3 and JAK2, which are involved in the biological network. One specific pathway is detected to be involved in the biological network of HMs with the cold property, the specific molecules are RAN and KPNB1. Cold propertied HMs show intensive toxicity in the heart, liver and kidney compared with hot HMs, which is likely to be correlated with the specific chemical fragments constructions in the HMs with the cold property, such as long chain alkenes, Benzo heterocycle and azotic heterocycle according to the chemical fragment analysis for the HMs. Conclusions Inflammation and immunity regulation are more related to HMs with the hot property, and cold propertied HMs possess the tendency to impact cell growth, proliferation and development. Integrative bioinformatics analysis and chemical structure analysis are a promising methods for identifying the biological activity of HM properties.
KW - Bioinformatics
KW - Herbal medicine
KW - Ingenuity Pathway Analysis
KW - Property
KW - Tradition Chinese medicine
UR - http://www.scopus.com/inward/record.url?scp=84880264813&partnerID=8YFLogxK
U2 - 10.1016/j.jep.2013.04.055
DO - 10.1016/j.jep.2013.04.055
M3 - Journal article
C2 - 23702041
AN - SCOPUS:84880264813
SN - 0378-8741
VL - 148
SP - 770
EP - 779
JO - Journal of Ethnopharmacology
JF - Journal of Ethnopharmacology
IS - 3
ER -