Abstract
This paper is concerned with an important issue in finite mixture modeling, the selection of the number of mixing components. A new penalized likelihood method is proposed for finite multivariate Gaussian mixture models, and it is shown to be consistent in determining the number of components. A modified EM algorithm is developed to simultaneously select the number of components and estimate the mixing probabilities and the unknown parameters of Gaussian distributions. Simulations and a data analysis are presented to illustrate the performance of the proposed method.
Original language | English |
---|---|
Pages (from-to) | 147-169 |
Number of pages | 23 |
Journal | Statistica Sinica |
Volume | 27 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2017 |
Scopus Subject Areas
- Statistics and Probability
- Statistics, Probability and Uncertainty
User-Defined Keywords
- EM algorithm
- Gaussian mixture models
- Model selection
- Penalized likelihood