Methane dissociation and syngas formation on Ru, Os, Rh, Ir, Pd, Pt, Cu, Ag, and Au: A theoretical study

Chak Tong AU*, Ching Fai Ng, Meng Sheng Liao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

178 Citations (Scopus)

Abstract

A theoretical study of methane dissociation and syngas formation on a number of transition metals M(M= Ru, Os, Rh, Ir, Pd, Pt, Cu, Ag, Au) is presented. The metal surface is simulated by a M10 cluster model. Reaction energies for the steps involved are determined. The activation energies have been estimated using the analytic BOC-MP formula. The dissociation energy is shown to be an important factor determining the catalytic activity of the metal. The order of the calculated total dissociation energies (CH4,s → Cs + 4Hs) is consistent with the order of methane conversions over the metals. In the presence of adsorbed oxygen, oxygen at metal on-top sites promotes methane dehydrogenation; oxygen at hollow sites promotes methane dehydrogenation on Pt, Cu, Ag, and Au, but shows no such effect on the other transition metals. The difference in the H2 selectivities can be associated with the difference in the stabilities of OH on the metals. For CHx couplings, the trend in the calculated combination energies is in agreement with experimental observation.

Original languageEnglish
Article numberjcat.1999.2498
Pages (from-to)12-22
Number of pages11
JournalJournal of Catalysis
Volume185
Issue number1
DOIs
Publication statusPublished - 1999

Scopus Subject Areas

  • Catalysis
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Methane dissociation and syngas formation on Ru, Os, Rh, Ir, Pd, Pt, Cu, Ag, and Au: A theoretical study'. Together they form a unique fingerprint.

Cite this