Medical concept embedding with multiple ontological representations

Lihong Song, Chin Wang Cheong, Kejing Yin, Kwok Wai CHEUNG, Benjamin C.M. Fung, Jonathan Poon

Research output: Chapter in book/report/conference proceedingConference contributionpeer-review

10 Citations (Scopus)

Abstract

Learning representations of medical concepts from the Electronic Health Record (EHR) has been shown effective for predictive analytics in healthcare. Incorporation of medical ontologies has also been explored to further enhance the accuracy and to ensure better alignment with the known medical knowledge. Most of the existing works assume that medical concepts under the same ontological category should share similar representations, which however does not always hold. In particular, the categorizations in medical ontologies were established with various factors being considered. Medical concepts even under the same ontological category may not follow similar occurrence patterns in the EHR data, leading to contradicting objectives for the representation learning. In this paper, we propose a deep learning model called MMORE which alleviates this conflicting objective issue by allowing multiple representations to be inferred for each ontological category via an attention mechanism. We apply MMORE to diagnosis prediction and our experimental results show that the representations obtained by MMORE can achieve better predictive accuracy and result in clinically meaningful sub-categorizations of the existing ontological categories.

Original languageEnglish
Title of host publicationProceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
EditorsSarit Kraus
PublisherInternational Joint Conferences on Artificial Intelligence
Pages4613-4619
Number of pages7
ISBN (Electronic)9780999241141
DOIs
Publication statusPublished - 2019
Event28th International Joint Conference on Artificial Intelligence, IJCAI 2019 - Macao, China
Duration: 10 Aug 201916 Aug 2019

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2019-August
ISSN (Print)1045-0823

Conference

Conference28th International Joint Conference on Artificial Intelligence, IJCAI 2019
Country/TerritoryChina
CityMacao
Period10/08/1916/08/19

Scopus Subject Areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Medical concept embedding with multiple ontological representations'. Together they form a unique fingerprint.

Cite this