Mechanisms responsible for poor oral bioavailability of paeoniflorin: Role of intestinal disposition and interactions with sinomenine

Zhong Qiu Liu, Zhi Hong JIANG, Liang LIU*, Ming Hu

*Corresponding author for this work

Research output: Contribution to journalJournal article

102 Citations (Scopus)


Purpose. To determine the intestinal disposition mechanisms of paeoniflorin, a bioactive glucoside, and to investigate the mechanisms by which sinomenine increases paeoniflorin bioavailability. Materials and Methods. A single-pass "four-site" rat intestinal perfusion model and a cultured Caco-2 cell model were employed. Results. In both model systems, paeoniflorin permeability was poor. In the perfusion model, maximal absorption and metabolism of paeoniflorin occurred in duodenum and jejunum, which were significantly decreased by a glucosidase inhibitor gluconolactone (20 mM). On the other hand, paeoniflorin absorption in terminal ileum increased significantly but its metabolism did not in the presence of sinomenine and cyclosporine A. In the Caco-2 cell model, paeoniflorin was transported 48-fold slower than its aglycone (paeoniflorigenin). Absorptive transport of paeoniflorin was significantly (p < 0.05) increased by sinomenine (38%), verapamil (27%), and cyclosporine A (41%), whereas its secretory transport was significantly (p < 0.01) decreased by sinomenine (50%), verapamil (35%) and cyclosporine A (37%). In contrast, MRP inhibitors MK-571 and leukotriene C4 did not affect transport of paeoniflorin. Lastly, sinomenine was also shown to significantly increase the absorptive transport of digoxin (a prototypical p-glycoprotein substrate) and to significantly decrease its secretory transport. Conclusions. Poor permeation, p-gp-mediated efflux, and hydrolysis via a glucosidase contributed to the poor bioavailability of paeoniflorin. Sinomenine (an inhibitor of the p-gp-mediated digoxin efflux) increased paeoniflorin's bioavailability via the inhibition of p-gp-mediated paeoniflorin efflux in the intestine.

Original languageEnglish
Pages (from-to)2768-2780
Number of pages13
JournalPharmaceutical Research
Issue number12
Publication statusPublished - Dec 2006

Scopus Subject Areas

  • Biotechnology
  • Molecular Medicine
  • Pharmacology
  • Pharmaceutical Science
  • Organic Chemistry
  • Pharmacology (medical)

User-Defined Keywords

  • Bioavailability
  • Caco-2
  • Disposition
  • Efflux
  • Intestinal
  • p-glycoprotein inhibitor
  • Paeoniflorin
  • Sinomenine


Dive into the research topics of 'Mechanisms responsible for poor oral bioavailability of paeoniflorin: Role of intestinal disposition and interactions with sinomenine'. Together they form a unique fingerprint.

Cite this