Abstract
The authors propose an elegant formulation of the Maze Routing with Buffer Insertion and Wiresizing problem as a graph-theoretic shortest path problem. This formulation provides time and space performance improvements over previously proposed dynamic programming based techniques. Routing constraints such as wiring obstacles and restrictions on buffer locations and types are easily incorporated in the formulation. They construct a buffer planning (BP)-graph such that the length of every path in this graph is equal to the Elmore delay. Therefore, finding the minimum Elmore delay path becomes a finite shortest path problem. The buffer choices and insertion locations are represented as the vertices in the BP-graph. The interconnect wires are sized by constructing a look-up table for buffer-to-buffer wiresizing solutions. The authors also provide a technique that is able to tremendously improve the runtime. Experiments show improvements over previously proposed methods.
Original language | English |
---|---|
Pages (from-to) | 1205-1209 |
Number of pages | 5 |
Journal | IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems |
Volume | 21 |
Issue number | 10 |
DOIs | |
Publication status | Published - Oct 2002 |
Scopus Subject Areas
- Software
- Computer Graphics and Computer-Aided Design
- Electrical and Electronic Engineering
User-Defined Keywords
- Buffer insertion
- Routing
- Wiresizing