Mapping effective connectivity by virtually perturbing a surrogate brain

Zixiang Luo, Kaining Peng, Zhichao Liang, Shengyuan Cai, Chenyu Xu, Dan Li, Yu Hu, Changsong Zhou, Quanying Liu*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

Abstract

Effective connectivity (EC), which reflects the causal interactions between brain regions, is fundamental to understanding information processing in the brain; however, traditional methods for obtaining EC, which rely on neural responses to stimulation, are often invasive or limited in spatial coverage, making them unsuitable for whole-brain EC mapping in humans. Here, to address this gap, we introduce Neural Perturbational Inference (NPI), a data-driven framework for mapping whole-brain EC. NPI employs an artificial neural network trained to model large-scale neural dynamics, serving as a computational surrogate of the brain. By systematically perturbing all regions in the surrogate brain and analyzing the resulting responses in other regions, NPI maps the directionality, strength and excitatory/inhibitory properties of brain-wide EC. Validation of NPI on generative models with known ground-truth EC demonstrates its superiority over existing methods such as Granger causality and dynamic causal modeling. When applied to resting-state functional magnetic resonance imaging data across diverse datasets, NPI reveals consistent, structurally supported EC patterns. Furthermore, comparisons with cortico-cortical evoked potential data show a strong resemblance between NPI-inferred EC and real stimulation propagation patterns. By transitioning from correlational to causal understandings of brain functionality, NPI marks a stride in decoding the brain’s functional architecture and facilitating both neuroscience studies and clinical applications.

Original languageEnglish
Pages (from-to)1-20
Number of pages20
JournalNature Methods
DOIs
Publication statusE-pub ahead of print - 22 Apr 2025

Fingerprint

Dive into the research topics of 'Mapping effective connectivity by virtually perturbing a surrogate brain'. Together they form a unique fingerprint.

Cite this