Abstract
Luminescent ruthenium(II)-cyanide complex with N-heterocyclic carbene pincer ligand C∧N∧C = 2,6-bis(1-butylimidazol-2-ylidene)pyridine and 2,2′-bipyridine (bpy) shows minimal cytotoxicity to both human breast carcinoma cell (MCF-7) and human retinal pigmented epithelium cell (RPE) in a wide range of concentration (0.1-500 μM), and can be used for the luminescent imaging of endocytosis of the complex in these cells.
Original language | English |
---|---|
Article number | 9070 |
Journal | Scientific Reports |
Volume | 5 |
DOIs | |
Publication status | Published - 13 Mar 2015 |
Scopus Subject Areas
- General
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Luminescent Ruthenium(II) Complex Bearing Bipyridine and N-Heterocyclic Carbene-based C∧N∧C Pincer Ligand for Live-Cell Imaging of Endocytosis'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Scientific Reports, Vol. 5, 9070, 13.03.2015.
Research output: Contribution to journal › Journal article › peer-review
TY - JOUR
T1 - Luminescent Ruthenium(II) Complex Bearing Bipyridine and N-Heterocyclic Carbene-based C∧N∧C Pincer Ligand for Live-Cell Imaging of Endocytosis
AU - Tsui, Wai Kuen
AU - Chung, Lai Hon
AU - Wong, Matthew Man Kin
AU - Tsang, Wai Him
AU - Lo, Hoi Shing
AU - Liu, Yaxiang
AU - Leung, Chung Hang
AU - MA, Edmond Dik Lung
AU - Chiu, Sung Kay
AU - Wong, Chun Yuen
N1 - Funding Information: 20. Kilpin, K. J. et al. Ruthenium(II) and Osmium(II) 1,2,3-Triazolylidene Organometallics: A Preliminary Investigation into the Biological Activity of ‘Click’ Carbene Complexes. Dalton Trans. 43, 1443–1448 (2014). 21. Dinda, J. et al. Synthesis, Structure, Electrochemistry and Cytotoxicity Studies of Ru(II) and Pt(II)–N-heterocyclic Carbene Complexes of CNC-pincer ligand. Inorg. Chim. Acta 413, 23–31 (2014). 22. Wong, C.-Y. et al. Ruthenium Carbene and Allenylidene Complexes Supported by the Tertiary Amine–Aromatic Diimine Ligand Set: Structural, Spectroscopic, and Theoretical Studies. Organometallics 27, 5806–5814 (2008). 23. Wong, C.-Y. et al. Ruthenium(II) Isocyanide Complexes Supported by Triazacyclononane/Trithiacyclononane and Aromatic Diimine: Structural, Spectroscopic, and Theoretical Studies. Organometallics 28, 3537–3545 (2009). 24. Wong, C.-Y. et al. Ruthenium Acetylide Complexes Supported by Trithiacyclononane and Aromatic Diimine: Structural, Spectroscopic, and Theoretased C,N,C-Pincer Ligands. Organometallics 29, 2533–2539 (2010). 25. Wong, C.-Y. et al. Photophysical and Theoretical Studies of Ruthenium(II)– Acetylide and –Cyanide Complexes with Aromatic Diimine and Trithiacyclononane. Organometallics 29, 6259–6266 (2010). 26. Chan, S.-C. et al. Facile Direct Insertion of Nitrosonium Ion (NO1) into a Ruthenium–Aryl Bond. Organometallics 30, 1311–1314 (2011). 27. Chan, S.-C., Cheung, H.-Y. & Wong, C.-Y. Ruthenium Complexes Containing 2-(2-Nitrosoaryl)pyridine: Structural, Spectroscopic, and Theoretical Studies. Inorg. Chem. 50, 11636–11643 (2011). 28. Chung, L.-H. et al. Emissive Osmium(II) Complexes Supported by N-Heterocyclic Carbene-based C‘C‘C-Pincer Ligands and Aromatic Diimines. Inorg. Chem. 51, 8693–8703 (2012). 29. Chan, S.-C. et al. Noninnocent Behaviour of Nitrosoarene–Pyridine Hybrid Ligands: Ruthenium Complexes Bearing a 2-(2-Nitrosoaryl)Pyridine Monoanion Radical. ChemPlusChem 78, 214–217 (2013). 30. Chung, L.-H. et al. Ruthenium(II) and Osmium(II) Complexes Bearing Bipyridine and the N-Heterocyclic Carbene-Based C‘N‘C Pincer Ligand: An Experimental and Density Functional Theory Study. Inorg. Chem. 52, 9885–9896 (2013). 31. Chung, L.-H. & Wong, C.-Y. Isolation of Ruthenium–Indolizine Complexes: Insight into the Metal–Induced Cycloisomerization of Propargylic Pyridines. Organometallics 32, 3583–3586 (2013). 32. Chung, L.-H. et al. Metal–Indolizine Zwitterion Complexes as a New Class of Organometallic Material: A Spectroscopic and Theoretical Investigation. Organometallics 33, 3443–3452 (2014). 33. Kalyanasundaram, K. Photophysics, Photochemistry and Solar Energy Conversion With Tris(bipyridyl)ruthenium(II) and Its Analogues. Coord. Chem. Rev. 46, 159–244 (1982). 34. Balzani, V., Sabbatini, N. & Scandola, F. ‘‘Second-sphere’’ Photochemistry and Photophysics of Coordination Compounds. Chem. Rev. 86, 319–337 (1986). 35. Juris, A. et al. Ru(II) Polypyridine Complexes: Photophysics, Photochemistry, Electrochemistry, and Chemiluminescence. Coord. Chem. Rev. 84, 85–277 (1988). 36. Meyer, T. J. Chemical Approaches to Artificial Photosynthesis. Acc. Chem. Res. 22, 163–170 (1989). 37. Balzani, V., Barigelletti, F. & De Cola, L. Metal Complexes as Light Absorption and Light Emission Sensitizers. Top. Curr. Chem. 158, 31–71 (1990). 38. Sauvage, J.-P. et al. Ruthenium(II) and Osmium(II) Bis(terpyridine) Complexes in Covalently-Linked Multicimponent Systems: Synthesis, Electrochemical Behaviour, Absorption Spectra, and Photochemical and Photophysical Properties. Chem. Rev. 94, 993–1019 (1994). 39. Balzani, V. et al. Luminescent and Redox-Active Polynuclear Transition Metal Complexes. Chem. Rev. 96, 759–834 (1996). 40. Campagna, S. et al. Photochemistry and Photophysics of Coordination Compounds: Ruthenium. Top. Curr. Chem. 280, 117–214 (2007). 41. Demas, J. N. & Crosby, G. A. Measurement of Photoluminescence Quantum Yields. J. Phys. Chem. 75, 991–1024 (1971). 42. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996). 43. Adamo, C. & Barone, V. Towards Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 110, 6158–6170 (1999). 44. van Lenthe, E., Baerends, E. J. & Snijders, J. G. Relativistic Regular Two-component Hamiltonians. J. Chem. Phys. 99, 4597–4610 (1993). 45. van Wüllen, C. Molecular Density Functional Calculations in the Regular Relativistic Approxiamtion: Method, Application to Coinage Metal Diatomics, Hydrides, Fluorides and Chlorides, and Comparison with First-order Relativistic Calculations. J. Chem. Phys. 109, 392–399 (1998). 46. Pantazis, D. A. et al. All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms. J. Chem. Theory Comput. 4, 908–919 (2008). 47. Klamt, A. & Schüürmann, G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and its Gradient. J. Chem. Soc., Perkin Trans. 2, 799–805 (1993). 48. Johnson, E. R. & Becke, A. D. A Post-Hartree–Fock Model of Intermolecular Interactions. J. Chem. Phys. 123, 024101 (2005). 49. Johnson, E. R. & Becke, A. D. A Post-Hartree–Fock Model of Intermolecular Interactions: Inclusion of Higher-Order Corrections. J. Chem. Phys. 124, 174104 (2006).
PY - 2015/3/13
Y1 - 2015/3/13
N2 - Luminescent ruthenium(II)-cyanide complex with N-heterocyclic carbene pincer ligand C∧N∧C = 2,6-bis(1-butylimidazol-2-ylidene)pyridine and 2,2′-bipyridine (bpy) shows minimal cytotoxicity to both human breast carcinoma cell (MCF-7) and human retinal pigmented epithelium cell (RPE) in a wide range of concentration (0.1-500 μM), and can be used for the luminescent imaging of endocytosis of the complex in these cells.
AB - Luminescent ruthenium(II)-cyanide complex with N-heterocyclic carbene pincer ligand C∧N∧C = 2,6-bis(1-butylimidazol-2-ylidene)pyridine and 2,2′-bipyridine (bpy) shows minimal cytotoxicity to both human breast carcinoma cell (MCF-7) and human retinal pigmented epithelium cell (RPE) in a wide range of concentration (0.1-500 μM), and can be used for the luminescent imaging of endocytosis of the complex in these cells.
UR - http://www.scopus.com/inward/record.url?scp=84924871398&partnerID=8YFLogxK
U2 - 10.1038/srep09070
DO - 10.1038/srep09070
M3 - Journal article
C2 - 25765974
AN - SCOPUS:84924871398
SN - 2045-2322
VL - 5
JO - Scientific Reports
JF - Scientific Reports
M1 - 9070
ER -