Abstract
The similar image patches should have similar underlying structures. Thus the matrix constructed from stacking the similar patches together has low rank. Based on this fact, the nuclear norm minimization, which is the convex relaxation of low rank minimization, leads to good denoising results. Recently, the weighted nuclear norm minimization has been applied to image denoising. This approach presents state-of-the-art result for image denoising. In this paper, we further study the weighted nuclear norm minimization problem for general image recovery task. For the weights being in arbitrary order, we prove that such minimization problem has a unique global optimal solution in the closed form. Incorporating this idea with the celebrated total variation regularization, we then investigate the image deblurring problem. Numerical experimental results illustratively clearly that the proposed algorithms achieve competitive performance.
Original language | English |
---|---|
Pages (from-to) | 1336-1357 |
Number of pages | 22 |
Journal | Journal of Scientific Computing |
Volume | 70 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Mar 2017 |
Scopus Subject Areas
- Software
- Theoretical Computer Science
- Numerical Analysis
- Engineering(all)
- Computational Theory and Mathematics
- Computational Mathematics
- Applied Mathematics
User-Defined Keywords
- Image deblurring
- Low rank
- Nuclear norm
- Variational method