TY - JOUR
T1 - Long-term treatment with a Chinese herbal formula, Sheng-Mai-San, improves cardiac contractile function in aged rats
T2 - The role of Ca2+ homeostasis
AU - Zhang, Guang Qin
AU - Wang, Hui
AU - Liu, Wen Tao
AU - Dong, Hang
AU - Fong, David W F
AU - Tang, Li Min
AU - Xiong, Yun Hua
AU - Yu, Zhiling
AU - Ko, Kam Ming
N1 - Copyright:
Copyright 2009 Elsevier B.V., All rights reserved.
PY - 2008/12/1
Y1 - 2008/12/1
N2 - A Chinese herbal formula Sheng-Mai-Yin (SMY), the liquid dosage form of Sheng-Mai-San, has been used clinically for treating heart failure, particularly in aged patients. To investigate the effect of SMY treatment on the contractile function of aged hearts, we first examined cardiac hemodynamics in aged rats. To define the mechanism involved in the enhancement of cardiac function, we investigated the effect of SMY treatment on Ca2+ homeostasis in ventricular cardiomyocytes isolated from aged rats. Ca2+ release was assessed by measurements of changes in cardiac Ca2+ transients and Ca2+ sparks, using laser scanning confocal microscopy. The functional status of Ca2+-release regulators, including L-type Ca2+ channels, sarcoplasmic reticulum (SR) Ca2+-adenosine triphosphatase (ATPase), and ryanodine receptors (RyRs), was also assessed. The results indicated that SMY treatment (2 g/kg per day for 30 doses within 6 weeks, intragastically) significantly improved hemodynamic parameters in aged rats. SMY treatment markedly increased the amplitude and shortened the duration of Ca2+ transients in aged cardiomyocytes, and reversed the age-related increase in frequency, decrease in amplitude, and changes in spatiotemporal properties of Ca2+ sparks in cardiomyocytes. In addition, SMY treatment increased the L-type Ca2+ current density, SR Ca 2+ content, and SR Ca2+-ATPase expression, and decreased the sensitivity of RyRs to Ca2+, all of which are causally related to increases in the amplitude of Ca2+ transients and the size of Ca2+ sparks. In conclusion, the improvement in cardiac contractile function afforded by SMY treatment in aged rats is likely mediated by an increase in Ca2+ release from the SR through L-type Ca2+ current-activated RyRs.
AB - A Chinese herbal formula Sheng-Mai-Yin (SMY), the liquid dosage form of Sheng-Mai-San, has been used clinically for treating heart failure, particularly in aged patients. To investigate the effect of SMY treatment on the contractile function of aged hearts, we first examined cardiac hemodynamics in aged rats. To define the mechanism involved in the enhancement of cardiac function, we investigated the effect of SMY treatment on Ca2+ homeostasis in ventricular cardiomyocytes isolated from aged rats. Ca2+ release was assessed by measurements of changes in cardiac Ca2+ transients and Ca2+ sparks, using laser scanning confocal microscopy. The functional status of Ca2+-release regulators, including L-type Ca2+ channels, sarcoplasmic reticulum (SR) Ca2+-adenosine triphosphatase (ATPase), and ryanodine receptors (RyRs), was also assessed. The results indicated that SMY treatment (2 g/kg per day for 30 doses within 6 weeks, intragastically) significantly improved hemodynamic parameters in aged rats. SMY treatment markedly increased the amplitude and shortened the duration of Ca2+ transients in aged cardiomyocytes, and reversed the age-related increase in frequency, decrease in amplitude, and changes in spatiotemporal properties of Ca2+ sparks in cardiomyocytes. In addition, SMY treatment increased the L-type Ca2+ current density, SR Ca 2+ content, and SR Ca2+-ATPase expression, and decreased the sensitivity of RyRs to Ca2+, all of which are causally related to increases in the amplitude of Ca2+ transients and the size of Ca2+ sparks. In conclusion, the improvement in cardiac contractile function afforded by SMY treatment in aged rats is likely mediated by an increase in Ca2+ release from the SR through L-type Ca2+ current-activated RyRs.
UR - http://www.scopus.com/inward/record.url?scp=58149240139&partnerID=8YFLogxK
U2 - 10.1089/rej.2008.0771
DO - 10.1089/rej.2008.0771
M3 - Journal article
C2 - 19072253
AN - SCOPUS:58149240139
SN - 1549-1684
VL - 11
SP - 991
EP - 1000
JO - Rejuvenation Research
JF - Rejuvenation Research
IS - 6
ER -