@inproceedings{54f0703ed8254802a23170304eecc7d2,
title = "Location-based top-k term querying over sliding window",
abstract = "In part due to the proliferation of GPS-equipped mobile devices, massive svolumes of geo-tagged streaming text messages are becoming available on social media. It is of great interest to discover most frequent nearby terms from such tremendous stream data. In this paper, we present novel indexing, updating, and query processing techniques that are capable of discovering top-k locally popular nearby terms over a sliding window. Specifically, given a query location and a set of geo-tagged messages within a sliding window, we study the problem of searching for the top-k terms by considering both the term frequency and the proximities between the messages containing the term and the query location. We develop a novel and efficient mechanism to solve the problem, including a quad-tree based indexing structure, indexing update technique, and a best-first based searching algorithm. An empirical study is conducted to show that our proposed techniques are efficient and fit for users{\textquoteright} requirements through varying a number of parameters.",
keywords = "Location, Term, Top-k",
author = "Ying Xu and Lisi Chen and Bin Yao and Shuo Shang and Shunzhi Zhu and Kai Zheng and Fang Li",
note = "This work was supported by the NSFC (U1636210, 61373156, 91438121 and 61672351), the National Basic Research Program (973 Program, No. 2015CB352403), the National Key Research and Development Program of China (2016YFB0700502), the Scientific Innovation Act of STCSM (15JC1402400) and the Microsoft Research Asia. Publisher Copyright: {\textcopyright} 2017, Springer International Publishing AG; 18th International Conference on Web Information Systems Engineering, WISE 2017 ; Conference date: 07-10-2017 Through 11-10-2017",
year = "2017",
month = oct,
day = "1",
doi = "10.1007/978-3-319-68783-4_21",
language = "English",
isbn = "9783319687827",
series = "Lecture Notes in Computer Science",
publisher = "Springer Cham",
pages = "299--314",
editor = "Lu Chen and Athman Bouguettaya and Andrey Klimenko and Fedor Dzerzhinskiy and Klimenko, {Stanislav V.} and Xiangliang Zhang and Qing Li and Yunjun Gao and Weijia Jia",
booktitle = "Web Information Systems Engineering – WISE 2017",
edition = "1st",
url = "https://link.springer.com/book/10.1007/978-3-319-68783-4",
}